基于spark的短视频推荐系统的设计与实现 毕业设计-附源码 53097

摘 要

随着互联网技术的发展和移动设备的普及,短视频平台成为人们获取信息和娱乐的重要渠道。然而,面对海量的短视频内容,用户往往面临选择困难和信息过载的问题。因此,开发一个短视频推荐系统具有重要意义。

本文基于Spark框架设计和实现了一个高效、准确且具有个性化推荐功能的短视频推荐系统。通过结合用户行为数据和视频内容特征,采用分布式计算技术,构建了一个优化的推荐模型。实验结果表明,该系统能够根据用户的兴趣和行为,提供个性化、精准的短视频推荐结果,提升用户体验和满意度。同时,该系统具备良好的性能和扩展性,能够应对大规模数据和实时推荐的需求。本研究为短视频平台提供了一种高效、准确且个性化的推荐解决方案,对于短视频推荐系统的研究和实践具有重要意义。

关键词:spark框架;短视频推荐系统;个性化推荐

                                                          Abstract

  With the development of Internet technology and the popularity of mobile devices, short video platform has become an important channel for people to obtain information and entertainment. However, when faced with massive amounts of short video content, users often face difficulties in choosing and information overload. Therefore, developing a short video recommendation system is of great significance.

This article designs and implements an efficient, accurate, and personalized short video recommendation system based on the Spark framework. By combining user behavior data and video content characteristics, an optimized recommendation model was constructed using distributed computing technology. The experimental results show that the system can provide personalized and accurate short video recommendation results based on user interests and behaviors, improving user experience and satisfaction. At the same time, the system has good performance and scalability, and can meet the needs of large-scale data and real-time recommendations. This study provides an efficient, accurate, and personalized recommendation solution for short video platforms, which is of great significance for the research and practice of short video recommendation systems.

Keywords: Spark framework; Short video recommendation system; Personalized recommendations
目录

第1章 引言

1.1 研究背景与意义

1.2 国内外研究现状

第2章 系统开发环境

2.1 Python简介

2.2 B/S体系结构介绍

2.3 spark框架介绍

2.4 MySQL数据库

第3章 系统分析

3.1 可行性分析

3.1.1 技术可行性

3.1.2 经济可行性

3.1.3 操作可行性

3.2 功能需求分析

3.3 性能需求分析

3.4 系统用例分析

第4章 系统设计

4.1 系统体系结构

4.2 总体结构设计

4.3 数据库设计

4.3.1 概念设计

4.3.2 逻辑设计

第5章 系统实现

5.1 登录模块的实现

5.2 普通用户功能模块的实现

5.2.1 注册模块的实现

5.2.2 前台首页模块的实现

5.2.3 视频资讯模块的实现

5.2.4 视频推荐模块的实现

5.3 管理员功能模块的实现

5.3.1 用户管理模块的实现

5.3.2 系统首页模块的实现

5.3.3 视频推荐管理模块的实现

5.3.4 通知公告管理模块的实现

5.3.5 资源管理模块的实现

5.3.6 系统管理模块的实现

第6章 系统测试

6.1 测试目的

6.2 测试用例

6.3 测试结果

第7章 总结与展望

参考文献

致谢

引言

  1. 研究背景与意义

随着互联网和移动设备的普及,短视频平台逐渐成为人们获取信息、娱乐和交流的重要方式。然而,面对海量的短视频内容,用户往往面临选择困难和信息过载的问题。为了提供更好的用户体验和个性化服务,研发短视频推荐系统成为一个迫切的需求。传统的推荐系统研究主要关注电影、音乐等领域,对于短视频推荐尚处于起步阶段。针对短视频推荐的特点,包括视频时长短、观看偏好多变等,需要研究新的推荐算法和模型。此外,短视频平台还需要考虑用户的兴趣多样性和个性化需求,提供更准确、精准的推荐结果。

因此,本研究旨在开发和优化短视频推荐系统,通过深入分析用户行为数据和视频内容特征,构建适应短视频领域的推荐算法和模型。同时,考虑到平台管理的需要,也将研究管理员功能,实现对用户和内容的有效管理和监控。通过该研究,可以提升短视频平台的用户体验、提供个性化服务,并为相关领域的推荐系统研究提供新的思路和方法。

    1. 国内外研究现状

短视频推荐系统的研究在国内外都取得了一定进展,同时结合现有的系统进行改进和优化是推进研究的重要方向。在国内,短视频平台的快速发展促使对短视频推荐系统的研究兴起。国内研究主要关注基于内容的推荐算法、基于协同过滤的推荐算法、混合推荐算法以及实时推荐和在线学习等方面。此外,还涉及到用户行为和兴趣建模,以及推荐系统的可解释性和公平性等问题。这些研究为国内的短视频推荐系统提供了一定的理论基础和技术支持。

在国外,也有许多研究致力于短视频推荐系统的改进与优化。国外研究主要关注推荐算法的创新,如基于深度学习的推荐模型,通过分析视频的语义和情感特征进行推荐。另外,还有研究聚焦于用户行为和兴趣建模,挖掘用户的隐含兴趣和行为模式。此外,推荐系统的可解释性和公平性也是国外研究关注的热点,提出了一些解释推荐结果和确保公平性的方法和算法。

结合现有的系统进行研究和优化可以采用以下思路。首先,充分利用现有系统中积累的用户行为数据和视频内容特征,通过深度学习等技术提取更多有效的特征信息。其次,结合现有推荐算法,包括基于协同过滤、内容过滤和混合推荐等方法,进行改进和优化。同时,结合用户行为数据进行用户兴趣建模和个性化推荐,构建用户兴趣模型并实现精准推荐。此外,还可以考虑多源信息融合,综合利用用户行为数据、视频内容特征和社交网络等信息,提供更全面和准确的推荐模型。另外,可以应用实时推荐和在线学习技术,根据实时数据调整推荐策略和模型参数,提供即时的个性化推荐体验。最后,利用用户反馈数据进行推荐效果评估和优化,了解推荐结果的质量和用户满意度,并据此进行改进和调整。

综上所述,国内外对短视频推荐系统的研究都取得了一定进展,结合现有的系统可以从数据利用、算法创新、用户兴趣建模、多源信息融合、实时推荐与在线学习以及用户反馈与评估等方面进行研究和优化。通过这些方法的应用,可以进一步提升短视频推荐系统的精准度、个性化程度和用户体验,为用户提供更好的服务和推荐体验。

   系统开发环境

  1. Python简介

Python编程语言被广泛应用于数据处理和机器学习领域。在该系统中,Python作为主要开发语言,用于处理用户行为数据和视频内容特征的预处理、特征提取以及推荐算法的实现。Python具有简洁易懂的语法和丰富的数据处理库,如NumPy、Pandas和Scikit-learn等,使得系统开发和数据处理更加高效和灵活。此外,Python还支持大规模分布式计算框架,如Spark,能够与其他技术无缝集成。

    1. B/S体系结构介绍

该系统采用B/S(Browser/Server)结构,即浏览器/服务器结构,通过Web浏览器作为客户端与服务器进行交互。用户可以通过浏览器访问系统的前端界面,浏览推荐内容、查看个人信息等操作。服务器端负责处理用户请求、推荐计算和数据存储等任务。这种结构具有跨平台、易于维护和扩展的优势,方便用户随时随地通过不同设备访问系统。 

    1. spark框架介绍

该系统利用Spark框架进行分布式计算和大规模数据处理。Spark是一个快速、通用的大数据处理框架,具有良好的扩展性和容错性。在该系统中,Spark被用于并行计算和内存存储,以提高数据处理和推荐算法的效率。系统可以利用Spark的强大功能进行用户行为数据的清洗和预处理、视频内容特征的提取,以及复杂的推荐算法的运行。同时,Spark还提供了丰富的机器学习库(如MLlib),支持构建和训练推荐模型。

    1. MySQL数据库

MySQL数据库被用于存储用户行为数据、视频内容信息和推荐结果等。作为一种关系型数据库管理系统,MySQL提供了稳定可靠的数据存储和查询功能,方便系统对用户数据和推荐结果进行管理和检索。系统可以将处理后的数据存储到MySQL数据库中,并通过灵活的查询语言进行快速的数据访问。此外,MySQL还支持水平扩展和备份恢复等功能,确保系统的数据安全和可靠性。


  1. 系统分析
    1. 可行性分析

可行性分析对于项目的成功实施至关重要。它能够评估技术、经济、时间和风险等方面的可行性,为决策者提供全面的信息,避免项目失败和资源浪费。通过合理的评估和规划,可行性分析确保项目能够在可行的基础上进行,并最大程度地实现预期目标和效益。

      1. 技术可行性

该基于Spark的短视频推荐系统在技术可行性方面表现出色。通过采用Spark框架作为底层计算平台,系统能够充分利用其分布式计算和内存存储的优势,处理大规模数据和复杂的推荐算法。同时,Python编程语言作为主要开发语言,具有丰富的数据处理库和机器学习工具,能够支持系统的功能实现和算法设计。通过综合运用这些技术,系统可以高效地提取用户行为数据和视频内容特征,并进行个性化的推荐计算,满足用户需求

      1. 经济可行性

在经济可行性方面,该系统经过细致的评估,显示出良好的前景。虽然系统的开发成本较高,包括人力资源和技术设备等投入,但预计将获得可观的经济回报。通过市场调研和商业计划,预期系统能够吸引更多用户,增加广告收入和付费订阅,从而实现盈利。此外,系统的持续运营成本相对较低,主要包括服务器维护和数据存储等,有助于确保系统在经济上的可行性和可持续性

      1. 操作可行性

在操作可行性方面,该系统经过全面评估以确保顺利运营。首先,人力资源方面,系统需要具备一定的技术人员和运营团队,能够负责系统的日常维护、用户支持和数据管理等工作。其次,系统与现有业务流程兼容性良好,可以与已有的短视频平台和内容管理系统进行无缝集成,避免重复工作和冲突。此外,系统还建立了健全的管理和监督机制,包括用户隐私保护措施、推荐结果监控和反馈机制,以确保系统运作安全可靠,并不断优化用户体验。

综上所述,该基于Spark的短视频推荐系统在技术、经济和操作层面上具备良好的可行性。通过有效利用Spark框架和Python编程语言的优势,系统能够实现高效的大规模数据处理和个性化推荐计算。经济可行性评估显示出项目具有盈利潜力和可持续性。操作可行性分析保证了系统的正常运营和管理。这将确保该系统成功实施,并为用户提供高质量的个性化短视频推荐服务,满足用户的需求。

    1. 功能需求分析

短视频推荐系统的功能分为普通用户和管理员两个方面。普通用户可以通过登录注册进入系统,并在首页浏览最新的通知公告、热门视频和个性化推荐内容。他们还可以查看短视频行业的资讯信息,管理个人账户和收藏的短视频。管理员则负责后台管理,包括监控系统整体情况、管理用户信息、制定视频推荐策略和管理视频分类标签等。他们还能发布通知公告,管理系统资源和轮播图。通过这些功能,短视频推荐系统为用户提供了个性化推荐和最新资讯,同时管理员可以有效管理系统运营和内容,确保良好的用户体验。具体功能分析如下:

1.普通用户功能:

登录注册:用户可以通过账户登录或注册新账户,提供个人信息和设置登录凭据。

首页展示:平台以瀑布流或推荐列表形式展示最新的视频推荐、热门视频和相关资讯等内容,吸引用户浏览和点击。

通知公告:用户可以查看系统发布的通知公告,包括平台更新、活动通知和重要公告等,及时了解平台的最新动态和重要信息。

视频资讯:提供关于短视频行业的最新资讯、活动信息等内容,帮助用户获取行业动态和了解相关活动,丰富用户的视频文化知识。

视频推荐:基于用户的兴趣和行为数据,系统推荐个性化的短视频内容给用户,增加用户粘性和提供优质的观看体验。

我的账户:用户可以查看和编辑个人账户信息,包括用户名、密码、个人资料等,确保账户安全和个人信息准确。

个人中心:用户可以管理收藏的短视频、查看历史记录、设置偏好,个性化定制推荐内容和用户体验。

2.管理员功能:

后台首页:管理员可以查看整体情况,如用户数量、视频推荐效果等数据统计,为管理决策提供参考。

系统用户管理:管理员可以管理平台的用户信息,包括权限设置、账户管理、用户审核等,确保用户数据的安全和合规性。

视频推荐管理:管理员可以管理短视频的推荐策略和推荐结果,调整推荐算法以提供更准确、个性化的推荐体验。

视频类型管理:管理员可以管理视频的分类和标签体系,确保视频能够被正确归类和检索,提升用户浏览和搜索的效果。

系统管理:管理员可以管理系统首页轮播图的展示内容,调整页面布局和样式,提升平台整体的用户体验和视觉效果。

通知公告管理:管理员可以发布和管理系统的通知公告信息,包括重要公告、活动通知、系统更新等,及时向用户传达重要信息。

资源管理:管理员可以发布和管理短视频行业的相关资讯信息,包括资讯的发布、分类和标签管理,丰富平台的资讯内容和多样性。

以通过以上功能,普通用户可以享受个性化推荐、查看最新资讯,并管理个人账户和收藏。而管理员则负责管理用户信息、调整推荐策略和管理平台资源,以提供优质的服务和良好的用户体验。

    1. 性能需求分析

响应时间:短视频推荐系统需要具备快速响应的能力,以确保用户能够及时获取到个性化推荐结果。系统应该在合理的时间范围内返回推荐结果,保持用户等待时间的最小化。

吞吐量:考虑到系统可能面对大规模的用户访问和数据处理需求,系统应具备高吞吐量的能力。这意味着系统需要能够同时处理多个用户请求,并能够高效地处理和推荐大量的短视频内容。

扩展性:短视频推荐系统应具备良好的扩展性,能够支持不断增长的用户和视频内容。随着用户数量的增加和视频库的扩大,系统应能够有效地进行水平扩展,以满足未来的需求并保持稳定性。

实时性:在处理用户行为数据和视频内容特征时,系统应具备实时性能。用户的兴趣和行为可能会发生变化,因此系统需要能够及时更新推荐结果,以反映用户的最新需求。

稳定性和可靠性:短视频推荐系统应具备稳定和可靠的性能,以确保系统在长时间运行中不会出现故障或中断。系统需要具备恢复能力,并能够处理异常情况,如网络故障或服务器崩溃等。

通过对这些性能需求进行全面的分析和评估,可以确保短视频推荐系统具备高效、稳定和可扩展的性能。这将为用户提供流畅的体验,并满足系统在大规模用户和数据处理方面的需求。

    1. 系统用例分析

系统用例分析是对系统中各个功能模块的用户需求和行为进行分析,以识别和描述不同的用户用例。通过系统用例分析,可以深入了解用户在平台上的操作流程和交互方式,为系统设计和开发提供指导,并确保平台能够满足用户的需求和期望。

普通用户用例图如下所示。

图3-1 普通用户用例图

管理员用例图如下所示。

图3-2 管理员用例图


  1. 系统设计
    1. 系统体系结构

在系统架构设计中,我们将确定系统的整体结构和组件之间的关系。这包括选择适当的架构风格,划分系统的层次结构,并定义各个模块的职责和交互方式。系统工作原理图如图4-1所示:

图3-1 系统工作原理图

    1. 总体结构设计

通过整体功能模块设计,我们将根据需求分析的结果,将系统的功能划分为不同的模块。每个模块负责实现特定的功能,并与其他模块进行协作。我们将详细定义每个模块的输入、输出、处理逻辑和相互依赖关系。系统的功能结构图如下图所示。

图3-2系统功能结构图

    1. 数据库设计
      1. 概念设计

数据库概念结构设计主要涉及数据库的实体和实体之间的关系。通过实体-关系模型或者其他适当的模型,我们将定义系统中涉及的各个实体以及它们之间的联系。总体ER图如下图所示。

图4-3总体ER图

      1. 逻辑设计

数据库逻辑结构设计则是在概念结构的基础上,进行具体的数据库表设计。我们将定义每个表的结构、字段和约束,并建立表与表之间的关系。

表regular_users (普通用户)

编号

名称

数据类型

长度

小数位

允许空值

主键

默认值

说明

1

regular_users_id

int

10

0

N

Y

普通用户ID

2

user_name

varchar

64

0

Y

N

用户名称

3

user_gender

varchar

64

0

Y

N

用户性别

4

contact_information

varchar

64

0

Y

N

联系方式

5

examine_state

varchar

16

0

N

N

已通过

审核状态

6

user_id

int

10

0

N

N

0

用户ID

7

create_time

datetime

19

0

N

N

CURRENT_TIMESTAMP

创建时间

8

update_time

timestamp

19

0

N

N

CURRENT_TIMESTAMP

更新时间

表video_recommendation (视频推荐)

编号

名称

数据类型

长度

小数位

允许空值

主键

默认值

说明

1

video_recommendation_id

int

10

0

N

Y

视频推荐ID

2

video_name

varchar

64

0

Y

N

视频名称

3

video_type

varchar

64

0

Y

N

视频类型

4

video_images

varchar

255

0

Y

N

视频图片

5

video_content

varchar

255

0

Y

N

视频内容

6

viewing_records

int

10

0

Y

N

0

观看记录

7

number_of_likes

int

10

0

Y

N

0

点赞数量

8

number_of_comments

int

10

0

Y

N

0

评论数量

9

video_title

varchar

64

0

Y

N

视频标题

10

number_of_collections

int

10

0

Y

N

0

收藏数量

11

video_id

int

10

0

Y

N

0

视频ID

12

release_date

varchar

64

0

Y

N

发布日期

13

hits

int

10

0

N

N

0

点击数

14

praise_len

int

10

0

N

N

0

点赞数

15

recommend

int

10

0

N

N

0

智能推荐

16

create_time

datetime

19

0

N

N

CURRENT_TIMESTAMP

创建时间

17

update_time

timestamp

19

0

N

N

CURRENT_TIMESTAMP

更新时间

表video_type (视频类型)

编号

名称

数据类型

长度

小数位

允许空值

主键

默认值

说明

1

video_type_id

int

10

0

N

Y

视频类型ID

2

video_type

varchar

64

0

Y

N

视频类型

3

create_time

datetime

19

0

N

N

CURRENT_TIMESTAMP

创建时间

4

update_time

timestamp

19

0

N

N

CURRENT_TIMESTAMP

更新时间


  1. 系统实现
    1. 登录模块的实现

通过用户登录,确保只有授权的用户可以访问系统,保障系统的安全性和数据的保密性。用户可以输入用户名和密码进行身份验证,成功后系统将跳转至主页面;若验证失败,系统将提示错误并要求重新输入。用户登录功能的设计应简洁明了、易于使用,同时也要考虑安全性措施,如密码加密和防止暴力破解等,以保护用户账户的安全。

用户登录流程图如下所示。

图5-1用户登录流程图

登录界面如下图所示。

图5-2登录界面

    1. 普通用户功能模块的实现
      1. 注册模块的实现

用户可以通过注册功能创建个人账户,提供必要的信息如用户名、密码和联系方式等。注册成功后,用户可以登录系统并享受个性化的推荐服务。注册功能的实现需要包括表单验证、数据存储和安全措施等,以确保用户信息的准确性、安全性和隐私保护。

用户注册流程图如下所示。

图5-3用户注册流程图

用户注册界面如下图所示。

图5-4用户注册界面

      1. 前台首页模块的实现

在用户登录后,用户可以通过用户首页浏览个性化的推荐内容。首页应该呈现给用户根据其兴趣和行为推荐的短视频列表,以及相关的视频信息如标题、封面图等。此外,首页还可以提供搜索功能、订阅频道、查看历史记录等交互选项,以满足用户对不同类型短视频的需求。通过用户首页,系统能够向用户展示最相关和有吸引力的短视频内容,提升用户体验和满意度。其主界面展示如下图5-5所示。

图5-5前台首页界面

      1. 视频资讯模块的实现

用户可以通过系统提供的视频资讯查看功能,浏览最新的热门视频、影视资讯和行业动态等内容。该功能可以包括不同分类的视频资讯列表、相关文章或评论,并提供了搜索和筛选等交互选项,以满足用户对特定主题或感兴趣内容的需求。界面如下图所示。

图5-6视频资讯界面

      1. 视频推荐模块的实现

通过该功能,用户可以浏览个性化推荐的短视频内容。系统根据用户的兴趣和行为分析,提供与用户喜好相匹配的视频推荐列表。用户可以在推荐页面上观看、点赞、评论和分享视频,以及通过相关推荐继续探索其他感兴趣的内容。界面如下图所示。

图5-7视频推荐界面

    1. 管理员功能模块的实现
      1. 用户管理模块的实现

通过用户管理功能,系统管理员可以管理用户账户、权限和信息。这包括添加新用户、禁用或删除账户、重置密码等操作。管理员还可以查看和编辑用户信息,如用户名、联系方式等。用户管理流程图如下所示。

图5-8用户管理流程图

用户管理界面如下图所示。

图5-9普通用户管理界面

      1. 系统首页模块的实现

管理员可以通过后台首页查看系统的整体运行情况和管理各项功能。后台首页通常提供数据统计、用户管理、内容审核、推荐算法调整等选项,以便管理员监控和管理系统的各个方面。管理员可以查看用户活跃度、推荐效果、数据分析等信息,并进行必要的操作和调整。系统首页界面如下图所示。

图5-10系统首页界面

      1. 视频推荐管理模块的实现

通过视频推荐管理,管理员可以对推荐算法进行调整和优化,以提供更准确、个性化的推荐结果。管理员可以根据用户反馈、数据分析等信息,对推荐内容等进行设置和修改。界面如下图所示。

图5-11视频推荐管理界面

      1. 通知公告管理模块的实现

通过该功能,管理员可以发布和管理系统内的通知公告,用于向用户传达重要信息、活动通知或系统更新等内容。管理员可以创建、编辑和删除通知公告,并设定发布时间和可见范围。通知公告管理界面如下图所示。

图5-12通知公告列表界面图

      1. 资源管理模块的实现

通过该功能,管理员可以发布、编辑和管理系统中的视频资讯内容,包括最新的热门视频、影视资讯和行业动态等。管理员可以创建不同分类的资讯文章,上传相关图片和视频,并设定发布时间和可见范围。视频资讯管理功能还可以提供搜索和筛选选项,以便用户快速找到感兴趣的内容。如下图所示。

图5-13资源管理界面图

      1. 系统管理模块的实现

管理员可以管理系统首页或其他页面上的轮播图内容。管理员可以上传、编辑和删除轮播图图片,并设置跳转链接和展示时间等参数。轮播图管理功能还可以提供统计和分析选项,以了解用户对轮播图的点击和互动情况。界面如下图所示。

图5-14系统管理界面图


  1. 系统测试
    1. 测试目的

测试目的是为了验证系统的功能、性能和稳定性,以确保系统在实际应用中能够达到预期的要求。通过测试,可以发现潜在的问题和缺陷,并及时进行修复和改进。测试还可以评估系统的可靠性、安全性和用户体验,以提供一个高质量和可信赖的产品。此外,测试也有助于验证系统是否满足用户需求和预期,是否符合相应的标准和规范。总之,测试的目的是为了确保系统的质量和可靠性,从而为用户提供良好的使用体验和价值。

    1. 测试用例

表6-1:用户登录测试用例表

测试用例编号

测试用例描述

测试结果

TC001

用户使用有效的用户名和密码进行登录

登录成功,跳转至用户首页

TC002

用户使用无效的用户名和密码进行登录

登录失败,显示错误提示信息

TC003

用户使用正确的用户名但错误的密码进行登录

登录失败,显示错误提示信息

TC004

用户使用空的用户名和密码进行登录

登录失败,显示错误提示信息

表6-2:密码修改测试用例表

测试用例编号

测试用例描述

测试结果

TC001

用户输入正确的当前密码和新密码

密码修改成功

TC002

用户输入错误的当前密码和新密码

密码修改失败,显示错误

TC003

用户输入为空的当前密码和新密码

密码修改失败,显示错误

表6-3:视频推荐查看测试用例表

测试用例编号

测试用例描述

测试结果

TC001

用户浏览个性化推荐视频列表,并点击观看某个视频

视频播放成功

TC002

用户点赞、评论和分享推荐的视频

操作成功,显示相应提示信息

TC003

用户浏览相关推荐视频,并点击观看某个视频

视频播放成功

表6-4:视频信息添加测试用例表

测试用例编号

测试用例描述

测试结果

TC001

管理员上传新的视频信息

视频信息添加成功

TC002

管理员编辑已存在的视频信息

视频信息修改成功

TC003

管理员删除已存在的视频信息

视频信息删除成功

TC004

管理员上传视频信息时遗漏必要的字段或信息错误

视频信息添加失败,显示错误

表6-5:视频资讯搜索测试用例表

测试用例编号

测试用例描述

测试结果

TC001

用户输入关键词进行视频资讯搜索

显示与关键词相关的资讯列表

TC002

用户输入空的关键词进行视频资讯搜索

显示所有视频资讯列表

TC003

用户输入不存在的关键词进行视频资讯搜索

显示空的资讯列表

测试结果

经过对此系统的测试,得出该系统足以满足普通用户日常需求,在功能项目和操作等方面也能满足管理员对于普通用户的管理。但是,还有很多功能有待添加,这个系统仅能满足大部分的需求,还要对此系统的功能更进一步的完善,这样使用起来才能更加的完美。

  1. 总结与展望

本论文基于Spark框架设计和实现了一个具有良好性能和用户体验的短视频推荐系统。通过使用Spark的分布式计算和内存存储机制,系统能够高效处理大规模数据和复杂的推荐算法,并提供个性化、准确和多样化的推荐结果。同时,采用Python作为开发语言,加速了系统的开发和调试过程。经济可行性分析表明,该系统具有投资回报率和盈利潜力,为可持续发展提供了基础。

虽然该系统在技术、经济和用户体验方面取得了令人满意的成果,但仍存在一些可以进一步改进和优化的方面。首先,可以探索更先进的推荐算法和模型,提高推荐的准确性和个性化程度。其次,可以引入更多的用户反馈和社交信息,提升推荐的时效性和针对性。此外,可以进一步优化系统的扩展性和稳定性,以应对未来不断增长的用户和内容需求。还可以加强系统的安全性和隐私保护机制,以保护用户的个人信息和权益。此外,可以考虑将该系统应用于其他领域,如音乐、新闻等,扩大其应用范围和商业潜力。同时,可以与其他平台和服务进行合作,实现更多的跨平台推荐和整合,提供更全面的用户体验。

总之,基于Spark的短视频推荐系统在当前已经取得了良好的成果,并具有进一步发展和优化的潜力。通过不断改进和创新,可以使系统更加智能化、个性化,并为用户提供更满意的推荐体验,推动短视频领域的进一步发展。

参考文献

[1]Ma D ,Wang X ,Lv X , et al.Data-driven smoothing approaches for interest modeling in recommendation systems[J].Expert Systems With Applications,2024,249(PA):123524-.

[2]Ceskoutsé T F R ,Bomgni B A ,Zanfack G R D , et al.Sub-clustering based recommendation system for stroke patient: Identification of a specific drug class for a given patient[J].Computers in Biology and Medicine,2024,171108117-.

[3]Yazdi A H ,Mahdavi S J S ,Yazdi A H .Dynamic educational recommender system based on Improved LSTM neural network.[J].Scientific reports,2024,14(1):4381-4381.

[4]周杨玥,李世锋,李林.基于Spark的智能菜品推荐系统设计与实现[J].软件工程,2024,27(02):69-73.DOI:10.19644/j.cnki.issn2096-1472.2024.002.014.

[5]陈昊.基于聚类和关联规则的短视频推荐系统的设计与实现[D].南京邮电大学,2023.DOI:10.27251/d.cnki.gnjdc.2023.001876.

[6]刘念,蔡春花.基于Spark的电影推荐系统的设计与实现[J].软件工程,2023,26(06):59-62+45.DOI:10.19644/j.cnki.issn2096-1472.2023.006.013.

[7]安邦.基于用户偏好的短视频混合推荐系统研究与实现[D].西安石油大学,2023.DOI:10.27400/d.cnki.gxasc.2023.000806.

[8]文小月.基于Spark平台的协同过滤推荐算法研究[D].云南财经大学,2023.DOI:10.27455/d.cnki.gycmc.2023.000291.

[9]孟瑞军.基于Spark的实时广告推荐系统研究[J].信息与电脑(理论版),2023,35(09):60-62.

[10]杨佳鹏,俎毓伟,纪佳琪等.基于Spark框架的瀑布型融合旅游推荐系统[J].智能计算机与应用,2023,13(04):142-146.

[11]黄宏昆,彭明.深度学习和Spark在电影推荐系统上的应用[J].福建电脑,2023,39(02):17-20.DOI:10.16707/j.cnki.fjpc.2023.02.004.

[12]周峰.基于Spark的混合策略音乐推荐系统的研究与实现[D].南京邮电大学,2022.DOI:10.27251/d.cnki.gnjdc.2022.001529.

[13]郝艳峰.基于人像聚类的短视频推荐系统的研究与实现[D].辽宁大学,2022.DOI:10.27209/d.cnki.glniu.2022.001992.

[14]彭宇,宁慧,张汝波.基于改进的LFM算法的短视频推荐系统的研究与实现[J].应用科技,2022,49(03):64-68.

[15]严辉.基于协同过滤推荐的短视频App运营系统的设计与实现[D].华中科技大学,2022.DOI:10.27157/d.cnki.ghzku.2022.000052.

[16]杨东辰.基于Spark大数据的短视频推荐系统的设计与研究[D].南昌大学,2021.DOI:10.27232/d.cnki.gnchu.2021.002662.

[17]李奥星.基于多模态信息及差分隐私的短视频推荐系统设计与实现[D].北京邮电大学,2021.DOI:10.26969/d.cnki.gbydu.2021.002187.

[18]马学明.基于XDeepFM模型的短视频推荐系统设计与研究[D].广东工业大学,2021.DOI:10.27029/d.cnki.ggdgu.2021.001917.

[19]齐德法.基于多重粒度召回的短视频推荐系统的设计与实现[D].山东师范大学,2019.DOI:10.27280/d.cnki.gsdsu.2019.000057.

[20]陶健.基于Spark的视频推荐系统研究与实现[D].重庆师范大学,2019.

                                                       致谢

在完成本论文的过程中,我要由衷感谢所有支持和帮助我的人。首先,我要感谢我的指导教师,他们给予了我宝贵的指导和建议,帮助我顺利完成研究工作。他们的专业知识和经验对我产生了深远的影响。此外,我要感谢我的家人和朋友,他们在我整个研究过程中给予了我无尽的鼓励和支持。他们相信我能够克服困难、坚持不懈地追求目标,这让我时刻保持积极向上的心态。最重要的是,我要感谢自己。在研究的过程中,我遇到了各种挑战和困难,但我从未放弃,始终保持着坚定的信念和努力的精神。正是这种勇气和毅力使我能够完成这项研究工作,并取得了令人满意的成果。

通过这次研究,我学到了很多知识和技能,也收获了自信和成长。我相信,只要我坚持努力和持续学习,就能够实现更大的成就和突破。因此,我将继续努力,为自己的梦想奋斗,成为一个有影响力和价值的人。最后,我再次向所有支持和帮助过我的人表示深深的感谢。你们的支持是我前进的动力,我会铭记于心,并用更好的成绩回报你们的期望和信任。谢谢!

                                   点赞+收藏+关注 → 私信领取本源代码、数据库

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值