<C++> 哈希的应用 —— 布隆过滤器

目录

需求发展

一、布隆过滤器介绍

二、布隆过滤器的实现

1.基本结构

2.插入

3.查找

4.删除

5.测试

三、优化方案

四、布隆过滤器总结

五、布隆过滤器应用 —— 海量数据面试题(哈希切割)

1.找文件交集 

query 指 查询语句,比如 网络请求、SQL 语句等,假设一个 query 语句占 50 Byte,单个文件中的 100 亿个 query 占 500 GB 的空间,两个文件就是 1000 GB

(1)近似算法

(2)精确算法

2. 找到出现次数最多的IP

3. 找到top K的IP


需求发展

常见的字符串比较方法是 按 ASCII 码值进行比较,直到两个字符串同时结束,说明两者一致。

比如字符串1 abcdef 和字符串2 azbmcy显然两个字符串不一样。

这种比较方法很直接,也很可靠,但缺点也很明显:需要对字符串进行遍历
一个字符串还好,如果是几千万个字符串呢?不但需要消耗大量存储空间,查找效率也很低,此时填写个昵称,服务器都要跑一会才有反映,这是用户所无法容忍的。

因此人们想出了另一个方法,利用 哈希映射 的思想,计算出 哈希值,存储这个值即可,可以借此 标识字符串是否存在,在进行字符串(昵称)比较时,只需要计算出对应的 哈希值,然后看看该位置是否存在即可

哈希值 也是一个整数啊,可以利用 位图 进行 设置,查找字符串时,本质上是在 查找哈希值是否在位图中存在,字符串有千万种组合,但字符是有限的,难免会出现 误判 的情况(此处的 哈希函数 为每个字符相加)

为了尽可能降低 误判率,在 位图 的基础之上设计出了 布隆过滤器

一、布隆过滤器介绍

位图有使用起来,节省空间,并且效率高的优点。位图的缺点,只能处理整形

        假如起昵称时要看一个字符串有没有被占用,用一个bit位标识。哈希解决冲突时,可以把后续同样位置冲突的元素的挂起来,形成链表。但是现在,如果要用位图存储字符串,bit位存不了指针,挂不起来,处理不了哈希冲突。如果用哈希存储又会浪费空间。
        布隆过滤器是一种紧凑的、巧妙的概率型数据结构,能够高效插入查询,来判断一个元素在或不在,用多个哈希函数,把一个数据映射到位图中,不仅能提高查询效率,还能节省空间

布隆过滤器 的核心在于通过添加 哈希函数 来 降低误判率。

所以 布隆过滤器 其实很简单,无非就是映射字符串时,多安排几个不一样的 哈希函数,多映射几个 比特位,只有当每个 比特位 的为 1 时,才能验证这个字符串是存在的。


二、布隆过滤器的实现

1.基本结构

布隆过滤器 离不开 位图,此时可以搬出之前实现过的 位图结构

既然需要增加 哈希函数,我们可以在模板中添加三个 哈希函数 的模板参数以及待存储的数据类型 K

// 需要多少个哈希函数根据自己情况而定
template<size_t N,
		class K,
		class Hash1,
		class Hash2,
		class Hash3>
class BloomFilter
{
public:
	//……

private:
		bitset<N> _bits;	//位图结构
};

显然,这三个 哈希函数 的选择是十分重要的,我们在这里提供三种较为优秀的 哈希函数(字符串哈希算法,分别是 BKDRHashAPHash 以及 DJBHash

函数原型如下(写成 仿函数 的形式,方便传参与调用):

struct BKDRHash
{
	size_t operator()(const string& s)
	{
		size_t hash = 0;
		for (auto ch : s)
		{
			hash += ch;
			hash *= 31;
		}

		return hash;
	}
};

struct APHash
{
	size_t operator()(const string& s)
	{
		size_t hash = 0;
		for (long i = 0; i < s.size(); i++)
		{
			size_t ch = s[i];
			if ((i & 1) == 0)
			{
				hash ^= ((hash << 7) ^ ch ^ (hash >> 3));
			}
			else
			{
				hash ^= (~((hash << 11) ^ ch ^ (hash >> 5)));
			}
		}
		return hash;
	}
};

struct DJBHash
{
	size_t operator()(const string& s)
	{
		size_t hash = 5381;
		for (auto ch : s)
		{
			hash += (hash << 5) + ch;
		}
		return hash;
	}
};

因为 布隆过滤器 中最常存储的数据类型是 字符串,并且三个 哈希函数 我们也已经有了,所以可以将 布隆过滤器 中模板添加上 缺省值

template<size_t N,
		class K = std::string,
		class Hash1 = BKDRHash,
		class Hash2 = APHash,
		class Hash3 = DJBHash>

2.插入

插入 无非就是利用三个 哈希函数 计算出三个不同的 哈希值,然后利用 位图 分别进行 设置 就好了

void set(const K& key)
{
    // 计算三个映射位置
	size_t hash1 = Hash1()(key) % len;  //% N 是为了避免计算出的哈希值过大
	_bs.set(hash1);

	size_t hash2 = Hash2()(key) % len;
	_bs.set(hash2);

	size_t hash3 = Hash3()(key) % len;
	_bs.set(hash3);
}

注意: 布隆过滤器的插入操作是一定会成功的,因为不管是什么字符串,都可以在其对应的位置留下痕迹


3.查找

查找 某个字符串时,需要判断它的每个 哈希值 是否都存在,如果有一个不存在,那么这个字符串必然是不存在的

bool test(const K& key)
{
	size_t hash1 = Hash1()(key) % N;
	if (!_bs.test(hash1))
		return false;

	size_t hash2 = Hash2()(key) % N;
	if (!_bs.test(hash2))
		return false;

	size_t hash3 = Hash3()(key) % N;
	if (!_bs.test(hash3))
		return false;

	// 来了一个key,全在就说明误判,不在就是准确的
	// 全假说明没有这个key存在,都为真就说明存在冲突
	// 假设来了个key,他是不在的,但是他映射的位置,都被别的key映射了,所以导致认为他在,误判了

	return true;
}

查找 函数可以很好的体现 过滤 的特性

如何判断一个人是否存在?
不能盲目去查找,而是应该根据姓名,查询身份证号、住址等个人信息,如果这些信息都没有,那么就说明这个人不存在,因为这些信息足够过滤出结果了;如果出现重名或信息重复的情况,则需要进一步判断,这就是说明 通过过滤判断 “存在” 是不准确的,但判断 “不存在” 是准确的

布隆过滤器判断 “不在” 是准确的,判断 “在” 是不准确的

比如,字符串1映射了 1、6、7 号位置,字符串2映射了 2、4、5 号位置,字符串3映射了 1、3、4 号位置,虽然这三个字符串不会相互影响,但如果此时字符串4映射的是 1、2、3 号位置,会被误断为 存在,理论上 字符串存储位置越密集,误判率越高

所以对于一些敏感数据,如果要判断是否存在,不能只依靠 布隆过滤器,而是使用 布隆过滤器 + 数据库 的方式进行双重验证

当然,如果 布隆过滤器 判断字符串不存在,那么就是真的不存在,因为这是绝对准确的

布隆过滤器 能容忍误判的场景:注册时,判断昵称是否存在


4.删除

一般的 布隆过滤器 不支持删除,一旦进行了删除(重置),会影响其他字符串

 表面上只删除了 “腾讯”,但实际上影响了 “百度”,在验证 “百度” 是否存在时,会被判断为 不存在,此时只有三个字符串,如果有更多呢?造成的影响是很大的,所以对于一般的 布隆过滤器,是不支持删除操作的。

如何让布隆过滤器支持删除?
关于共用同一份资源这个问题,我们以前就已经见过了,比如 命名管道,当我们试图多次打开同一个 命名管道 时,操作系统实际上并不会打开多次,因为这样是很影响效率的,实际每打开一次 命名管道,其中的 计数器++,当关闭 命名管道 时,计数器--,直到 计数器 为 0 时,命名管道 才会被真正关闭

这不就是 引用计数 的思想吗?

我们可以给每一个 比特位 带上一个 引用计数器,用来表示当前位置存在几个映射关系,这样 布隆过滤器 就能支持 删除 操作了,但这未免也太本末倒置了,位图 的优点是 高效且空间利用率高,如果给每一个 比特位 都挂上一个 引用计数器,会导致 位图 占用的内存资源膨胀,浪费很多不必要的空间,并且 删除 操作需求不大,没必要添加。


5.测试

测试方法:插入约 10 w 个字符串(原生),对原字符串进行微调后插入(近似),最后插入等量的完全不相同的字符串(不同),分别看看 原生 与 近似原生 与 不同 字符串之间的误判率

void TestBloomFilter2()
{
   //测试误判率
   //构建一组字符串 + 一组相似字符串 + 一组完全不同字符串
   //通过 test 测试误判率

   const size_t N = 100000;	//字符串数
   string str = "https://blog.csdn.net/weixin_61437787?spm=1000.2115.3001.5343";

   //构建原生基本的字符串
   vector<string> vsStr(N);
   for (size_t i = 0; i < N; i++)
   {
       string url = str + to_string(i);
       vsStr[i] = url;	//保存起来,后续要用
   }

   //构建相似的字符串
   vector<string> vsSimilarStr(N);
   BloomFilter<N> bfSimilarStr;
   for (size_t i = 0; i < N; i++)
   {
       string url = str + to_string(i * -1);
       vsSimilarStr[i] = url;
       bfSimilarStr.set(url);
   }

   //构建完全不一样的字符串
   str = "https://leetcode.cn/problemset/all/";
   vector<string> vsDiffStr(N);
   BloomFilter<N> bfDiffStr;
   for (size_t i = 0; i < N; i++)
   {
       string url = str + to_string(i);
       vsDiffStr[i] = url;
       bfDiffStr.set(url);
   }

   //误判率检测:原生 <---> 近似
   double missVal = 0;
   for (auto e : vsStr)
   {
       if (bfSimilarStr.test(e) == true)
           missVal++;
   }

   //误判率检测:原生 <---> 不同
   double diffVal = 0;
   for (auto e : vsStr)
   {
       if (bfDiffStr.test(e) == true)
           diffVal++;
   }

   cout << "原生 <---> 近似 误判率:" << missVal / N * 100 << "%" << endl;
   cout << "原生 <---> 不同 误判率:" << diffVal / N * 100 << "%" << endl;
}

 显然,此时存在很高的误判率


三、优化方案

可以从两个方面进行优化:

  1. 增加哈希函数的个数(不是很推荐)
  2. 扩大布隆过滤器的长度,使数据更分散

因此我们可以控制 布隆过滤器 的长度,降低 误判率

那么如何选择 布隆过滤器 的长度,做到 平衡误判率与空间占用呢

详解布隆过滤器的原理,使用场景和注意事项

 经过计算得出,长度为 3~8 时,效果最好

// 需要多少个哈希函数根据自己情况而定
template<size_t N, class K = string,
class Hash1 = BKDRHash,
class Hash2 = APHash,
class Hash3 = DJBHash>
class BloomFilter
{
public:
	void set(const K& key)
	{
		size_t len = N * _X;

		size_t hash1 = Hash1()(key) % len;
		_bs.set(hash1);

		size_t hash2 = Hash2()(key) % len;
		_bs.set(hash2);

		size_t hash3 = Hash3()(key) % len;
		_bs.set(hash3);
	}

	bool test(const K& key)
	{
		size_t len = N * _X;

		size_t hash1 = Hash1()(key) % len;
		if (!_bs.test(hash1))
			return false;

		size_t hash2 = Hash2()(key) % len;
		if (!_bs.test(hash2))
			return false;

		size_t hash3 = Hash3()(key) % len;
		if (!_bs.test(hash3))
			return false;

		// 来了一个key,全在就说明误判,不在就是准确的
		// 全假说明没有这个key存在,都为真就说明存在冲突
		// 假设来了个key,他是不在的,但是他映射的位置,都被别的key映射了,所以导致认为他在,误判了

		return true;
	}
private:
	static const size_t _X = 6;//布隆过滤器的长度
	bitset<N* _X> _bs; //位图的大小
};

此时再来看看之前的测试:

误判率降至 5% 左右

对于 用户登录时检测昵称是否存在 这件事上,已经足够用了,如果想要最求更高的准度,可以使用 布隆过滤器 + 数据库 双重验证即可。


四、布隆过滤器总结

总的来说,作为 哈希思想 的衍生品,布隆过滤器 实现了字符串的 快速查找与极致的空间利用,在需要判断字符串是否存在的场景中,判断 “不在”,是值得信赖的

优点:

  1. 查找效率极高,为 O(K),其中 K 表示哈希函数的个数
  2. 哈希函数之间并没有直接关系,方便进行硬件计算
  3. 数据量很大时,布隆过滤器可以表示全集
  4. 可以利用多个布隆过滤器进行字符串的 交集、并集、差集运算
  5. 在可以容忍误判率的场景中,布隆过滤器优于其他数据结构
  6. 布隆过滤器中存储的数据无法逆向复原,具有一定的安全性

缺点:

  1. 存在一定的误判性
  2. 无法对元素本身进行操作,仅能判断存在与否
  3. 一般不支持删除功能
  4. 采取计数删除的方案时,可能存在 计数回绕 的问题

实际应用场景:

  • 注册时对于 昵称、用户名、手机号的验证
  • 减少磁盘 IO 或者网络请求,因为一旦一个值必定不存在的话,我们可以不用进行后续昂贵的查询请求

总之,能被 布隆过滤器 拦截(过滤)下来的数据,一定是不存在的


五、布隆过滤器应用 —— 海量数据面试题(哈希切割)

1.找文件交集 

给两个文件,分别有 100 亿个 query ,我们只有 1 GB 内存,如何找到两个文件交集?分别给出 精确算法 和 近似算法

query 指 查询语句,比如 网络请求、SQL 语句等,假设一个 query 语句占 50 Byte,单个文件中的 100 亿个 query 占 500 GB 的空间,两个文件就是 1000 GB

(1)近似算法

判断交集本质上是判断在不在,借助布隆过滤器,先存储其中一个文件的 query 语句,这里给每个 query 语句分配 4 比特位,100 亿个就占约 1 GB 的内存,可以存下,存储完毕后,再从另一个文件读取 query 语句,判断是否在 布隆过滤器 中,“在” 的就是交集。因为 布隆过滤器 判断 “在” 不准确,符合题目要求的 近似算法。

(2)精确算法

对于这种海量数据,需要用到哈希分割,我们这里把单个文件(500 GB 数据)分割成 1000 个小文件,平均每个文件大小为 512 Mb,再将小文件读取到内存中;另一个文件也是如此,读取两个大文件中的小文件后,可以进行交集查找,再将所有小文件中的交集统计起来,就是题目所求的交集了。

 此时存在一个问题:如果我们是直接平均等分成 1000 个小文件的话,我们也不知道小文件中相似的 query 语句位置,是能把每个小文件都进行匹配对比,这样未免为太慢了。

所以不能直接平均等分,需要使用 哈希分割 进行切分:i = HashFunc(query) % 1000

不同的 query 会得到不同的下标 i,这个下标 决定着这条 query 语句会被存入哪个小文件中,显然,一样的 query 语句计算出一样的下标,也就意味着它们会进入下标相同的小文件中,经过 哈希切割 后,只需要将 大文件 A 中的小文件 0 大文件 B 中的小文件 0 进行求 交集 的操作就行了,这样能大大提高效率

 

但是,此时存在一个 问题:如果因哈希值一致,而导致单个小文件很大呢?

此时如果小文件变成了 1GB、2GB、3GB 甚至更大,就无法被加载至内存中(算法还有消耗)

解决方法很简单:借助不同的哈希函数再分割

即使在同一个小文件中,不同的 query 语句经过不同的 哈希函数 计算后,仍可错开,怕的是 存在大量重复的 query ,此时 哈希函数 就无法 分割 了,因为计算出的 哈希值 始终一致

所以面对小文件过大的问题,目前有两条路可选:

  1. 大多都是相同、重复的 query,无法分割,只能按照大小,放到其他小文件中
  2. 大多都是不相同的 query,可以使用 哈希函数 再分割

这两条路都很好走,关键在于如何选择?
小文件中实际的情况我们是无法感知的,但可以通过特殊手段得知:探测

对于大于 512 Mb 的小文件,我们可以对其进行读取,判断属于情况1、还是情况2

  1. 首先准备一个 unorder_set,目的很简单:去重
  2. 读取文件中的 query 语句,存入 unordered_set 中
  3. 如果小文件读取结束后,没有发生异常情况,说明属于情况1:大多都是相同、重复的 query 语句,把这些重复率高的数据打散,放置其他 512 Mb 的小文件中
  4. 如果小文件读取过程中,出现了一个异常,捕获结果为 bad_alloc,说明读取到的大多都是不重复的 query 语句,因为我们内存只有 1 GB,抛出的异常是 内存爆了,异常的抛出意味着这个小文件属于情况2,可以使用其他的 哈希函数 对其进行再分割,分成 512 Mb 的小文件
     

如此一来,这个文件就被解决了,核心在于:利用哈希切割将数据分为有特性的小文件、利用抛异常得知小文件的实际情况

2. 找到出现次数最多的IP

给一个超过 100 GB大小的 log filelog 中存着 IP 地址, 设计算法找到出现次数最多的 IP 地址?

这题本质上也是在考 哈希分割,将 log file 文件中的 IP 地址看作上一题中的 query 语句,得知文件大小约为 500 GB

因为这里没有内存限制,我们可以将其分为 500 个小文件,每个小文件大小为 1 GB

这里分为小文件的目的是 让相同的 IP 分至同一个小文件中,针对较大的小文件,依然采取 其他哈希函数继续分割 或 分给其他小文件的做法

切分成小文件后就可以加载到内存了,对于每次加载到内存的小文件,使用unorderedmap<string,int> 对该小文件中的所有IP进行次数统计,找出出现次数最多的IP,将每个文件中出现次数最多的IP再使用 unorderedmap<string,int> 进行统计,就能找到出现次数最多的那个IP了。

3. 找到top K的IP

与上题条件相同,如何找到 Top K 的 IP ?如何直接用 Linux 系统命令实现?

  1. 对500G的文件建堆,内存放不下,因此还是要切分成小文件,如上图中将500G的大文件利用哈希函数切分成500个小文件。
  2. 将第一个文件加载到内存中,对第一个小文件建有K个元素的小堆,只要比堆顶元素大就进堆,最后堆里剩下的就是第一个小文件中出现次数最多的K个IP。
  3. 将剩下的其它小文件依次加载到内存,每加载一个小文件,就将该小文件中的所有IP和堆顶元素进行比较,只要比堆顶元素大,就进堆。最后堆里留下的就是出现次数最多的K个IP。

至于如何利用 Linux 命令解决?

sort log_file | uniq -c | sort -nrk1,1 | head -K

解释:

  • sort log_file 表示对 log_file 文件进行排序
  • uniq -c 表示统计出其中每个 IP 的出现次数
  • sort -nrk1,1 表示按照每个 IP 的出现次数再进行排序
  • head -k 表示选择前 k 个 IP 地址显示

注意: 以上操作都需要借助管道 | 因为它们都是有关联性的
 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值