对比分析折半查找与Fibonacci查找算法
①二分查找算法
算法思想:
首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较
如果两者相等,则查找成功;
否则利用中间位置记录将表分成前、后两个子表,
如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表,
否则进一步查找后一子表。
重复以上过程,直到找到满足条件的记录,使查找成功,或直到子表不存在为止,此时查找不成功。
例:假设已知有序数组为{1,2,4,5,7,8,11,12,15,19,21},查找元素为11,则查找过程如下。
算法时间复杂度:O(log n)
代码实现:
int search(int guan[], int imp, int n)
{
int mid;
int low = 1, high = n;
while (low <= high)
{
mid = (low + high) / 2;
if (imp == guan[mid])
return mid;
else if (imp < guan[mid])
high = mid - 1;
else if (imp > guan[mid])
low = mid + 1;
}
return 0;
}
②Fibonacci查找算法
斐波那契查找也要求数据是有序的。斐波那契查找采用和二分查找相似的区间分割策略,都是通过不断的分割区间缩小搜索的范围。不过它的分割方法不是二分查找中原有的中值 mid 的求解方式,其 mid 不再代表中值,而是代表了黄金分割点,要搞清楚这一点,我们先要介绍Fibonacci数列;
Fibonacci数列:
又名黄金分割数列(因为它的前一项与后一项的比值随着数字数量的增多逐渐逼近黄金分割比值0.618)
斐波那契数列以如下递推的方法定义:
F ( 0 ) = 0 ,