对比分析折半查找与Fibonacci查找算法

本文对比分析了折半查找与Fibonacci查找算法。二分查找算法时间复杂度为O(log n),通过不断分割区间来查找。Fibonacci查找同样基于有序数组,利用斐波那契数列特性进行区间分割,查找点计算公式为mid=left+F(n−1)−1。两种算法在查找策略上有所不同,Fibonacci查找可能需要扩充数组以匹配斐波那契数列长度。
摘要由CSDN通过智能技术生成

对比分析折半查找与Fibonacci查找算法

①二分查找算法

算法思想:

首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较

如果两者相等,则查找成功;

否则利用中间位置记录将表分成前、后两个子表,

如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表,

否则进一步查找后一子表。

重复以上过程,直到找到满足条件的记录,使查找成功,或直到子表不存在为止,此时查找不成功。

例:假设已知有序数组为{1,2,4,5,7,8,11,12,15,19,21},查找元素为11,则查找过程如下。

在这里插入图片描述
算法时间复杂度:O(log n)

代码实现:

int search(int guan[], int imp, int n)
{
   
	int mid;
	int low = 1, high = n;
	while (low <= high)
	{
   
		mid = (low + high) / 2;
		if (imp == guan[mid])
			return mid;
		else if (imp < guan[mid])
			high = mid - 1;
		else if (imp > guan[mid])
			low = mid + 1;
	}
	return 0;
}
②Fibonacci查找算法

斐波那契查找也要求数据是有序的。斐波那契查找采用和二分查找相似的区间分割策略,都是通过不断的分割区间缩小搜索的范围。不过它的分割方法不是二分查找中原有的中值 mid 的求解方式,其 mid 不再代表中值,而是代表了黄金分割点,要搞清楚这一点,我们先要介绍Fibonacci数列;

Fibonacci数列:

又名黄金分割数列(因为它的前一项与后一项的比值随着数字数量的增多逐渐逼近黄金分割比值0.618)

斐波那契数列以如下递推的方法定义:
F ( 0 ) = 0 ,

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值