【✓基础算法 2.4】KMP(完结)

文章介绍了KMP算法的基本原理,重点在于如何计算next数组以及使用该数组进行字符串匹配。next数组允许在模式串匹配失败时不回溯主串指针,提高效率。文中给出了Java和C++两种语言的代码实现,用于查找模式串在主串中的所有出现位置。
摘要由CSDN通过智能技术生成

当模式串和主串的子串有不匹配时,便往后退一步,看是否能走通,如果不能,则进行退—— KMP 

目录

一、KMP算法简介

二、手算求next数组

三、next数组实现代码 

四、完整代码实现 

1、java

2、c++ 


一、KMP算法简介

当主串的子串和模式串不匹配时,主串指针i不回溯,模式串指针j=next[j]

平均时间复杂度:O(m+n)

KMP主要分两步:求next数组、匹配字符串

二、手算求next数组

  • next数组的含义:当第j个字符匹配失败,j指针应该回退到的下标值
  • 比如:next[7]=5 当j=7匹配失败时,j指针应该回退到下标5
  • 当第j个字符匹配失败,由前1~j-1个字符组成的串称为S
  • next[j] = S的最长相等前后缀长度+1     【最长相等前后缀越长,回退的步数越小】
  • 串的前缀:包含第一个字符,且不包含最后一个字符的子串
  • 串的后缀:包含最后一个字符,且不包含第一个字符的子串

 

 

举个求手动求next数组的例子: 

三、next数组实现代码 

next数组的求法是通过模式串自己与自己进行匹配操作得出来的

    //求next数组
    for(int i=2,j=0;i<=n;i++)
    {
        while(j&&p[i]!=p[j+1]) j=ne[j];

        if(p[i]==p[j+1]) j++;

        ne[i]=j;
    }

四、完整代码实现 

AcWing 831. KMP字符串 - AcWing

给定一个主串 S,以及一个模式串 P,所有字符串中只包含大小写英文字母以及阿拉伯数字。

模式串 P 在主串 S 中多次作为子串出现。

求出模式串 P 在主串S 中所有出现的位置的起始下标。

输入格式

第一行输入整数 N,表示字符串 P 的长度。

第二行输入字符串 P。

第三行输入整数 M,表示字符串 S 的长度。

第四行输入字符串 S。

输出格式

共一行,输出所有出现位置的起始下标(下标从 00 开始计数),整数之间用空格隔开。

数据范围

1≤N≤105
1≤M≤106

输入样例:

3
aba
5
ababa

输出样例:

0 2

1、java

import java.util.*;
import java.io.*;

class Main
{
    static int N=100010,M = 1000010;
    static int[] ne=new int[N];
    
    public static void main(String[] args)throws IOException
    {
        BufferedReader bf=new BufferedReader(new InputStreamReader(System.in));
        BufferedWriter wt=new BufferedWriter(new OutputStreamWriter(System.out));
        
        int n=Integer.parseInt(bf.readLine());
        String pp=" "+bf.readLine();
        char[] p=pp.toCharArray();
        
        int m=Integer.parseInt(bf.readLine());
        String ss=" "+bf.readLine();
        char[] s=ss.toCharArray();
        
        //求next[]——模式串自己与自己匹配
        for(int i=2,j=0;i<=n;i++) //规定next[1]=0,所以i从2开始
        {
            while(j!=0&&p[i]!=p[j+1]) j=ne[j]; //前后缀匹配不成功 不断回退
            
            if(p[i]==p[j+1]) j++; //匹配成功 最长相等前后缀+1
            
            ne[i]=j; //ne[i]=最长相等前后缀+1
        }
        
        //kmp匹配
        for(int i=1,j=0;i<=m;i++) //因为规定s[i]和p[j+1]匹配,所以下标i从1开始,j从0开始
        {
            while(j!=0&&s[i]!=p[j+1]) j=ne[j]; //如果最后不能匹配且j不是起点(j!=0还能继续往后退)
            //用while是由于移动后可能仍然失配,所以要继续移动,直到匹配或j回到起点
            
            if(s[i]==p[j+1]) j++; //如果当前匹配成功 则j移向p串的下一位
            
            if(j==n) //匹配成功
            {
                wt.write(i-n+" ");
                j=ne[j]; //把成功当做失败 继续匹配下一个位置
            }
        }
        
        wt.flush();
    }
}

2、c++ 

#include <bits/stdc++.h>
using namespace std;

const int N=1e5+10,M=1e6+10;
char p[N],s[M];
int ne[N];

int main()
{
    int n,m;
    cin>>n>>p+1>>m>>s+1;
    
    //求next数组
    for(int i=2,j=0;i<=n;i++)
    {
        while(j&&p[i]!=p[j+1]) j=ne[j];
        if(p[i]==p[j+1]) j++;
        ne[i]=j;
    }
    
    //kmp匹配
    for(int i=1,j=0;i<=m;i++)
    {
        while(j&&s[i]!=p[j+1]) j=ne[j];
        if(s[i]==p[j+1]) j++;
        if(j==n)
        {
            cout<<i-n<<" ";
            j=ne[j];
        }
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值