Java中优先队列API

Java中的优先队列(PriorityQueue)是一个基于堆实现的无界队列,优先队列中的元素按照自然顺序或者通过提供的比较器排序。

1. 构造方法

PriorityQueue(): 创建一个默认初始容量为11的空优先队列,并根据其元素的自然顺序对其进行排序。

PriorityQueue(int initialCapacity): 创建一个指定初始容量的空优先队列,并根据其元素的自然顺序对其进行排序。

PriorityQueue(int initialCapacity, Comparator<? super E> comparator): 创建一个指定初始容量的空优先队列,并使用给定的比较器对元素进行排序。

PriorityQueue(Collection<? extends E> c): 创建一个优先队列,并根据提供的集合 c 的元素自然顺序对其进行排序。

PriorityQueue(PriorityQueue<? extends E> c): 创建一个优先队列,包含与给定优先队列相同的元素。

PriorityQueue(SortedSet<? extends E> c): 创建一个优先队列,包含与给定有序集合相同的元素。

2.常用方法

插入与删除操作
boolean add(E e): 将指定的元素插入到优先队列中。如果插入成功,返回 true。

boolean offer(E e): 与 add(E e) 类似,都是将元素插入到优先队列中。这个方法在元素无法插入时返回 false。

E poll(): 获取并移除队列的头元素,如果队列为空,则返回 null。

E remove(): 获取并移除队列的头元素,如果队列为空,则抛出 NoSuchElementException。

访问操作
E peek(): 获取但不移除队列的头元素,如果队列为空,则返回 null。
E element(): 获取但不移除队列的头元素,如果队列为空,则抛出 NoSuchElementException。

批量操作
boolean remove(Object o): 从队列中移除指定的元素,如果存在多个相同的元素,只移除其中一个。如果移除成功返回 true,否则返回 false。
boolean contains(Object o): 检查优先队列是否包含指定的元素,返回 true 或 false。
int size(): 返回优先队列中的元素个数。
boolean isEmpty(): 检查队列是否为空,如果为空返回 true,否则返回 false。
void clear(): 清空优先队列,移除所有元素。

集合操作
Object[] toArray(): 返回包含优先队列中所有元素的数组。
<T> T[] toArray(T[] a): 返回包含优先队列中所有元素的数组,并将其存储在给定的数组 a 中。

迭代操作
Iterator<E> iterator(): 返回队列元素的迭代器,但不能保证顺序。

3.使用示例

import java.util.PriorityQueue;
import java.util.Comparator;

public class PriorityQueueExample {
    public static void main(String[] args) {
        // 创建一个自然顺序的优先队列
        PriorityQueue<Integer> pq = new PriorityQueue<>();
        
        // 添加元素
        pq.offer(5);
        pq.offer(1);
        pq.offer(3);
        pq.offer(10);
        
        // 获取并移除队列的头元素
        System.out.println("poll: " + pq.poll()); // 输出 1
        
        // 获取但不移除队列的头元素
        System.out.println("peek: " + pq.peek()); // 输出 3
        
        // 检查是否包含元素
        System.out.println("contains 5? " + pq.contains(5)); // 输出 true
        
        // 移除元素
        pq.remove(5);
        System.out.println("contains 5 after removal? " + pq.contains(5)); // 输出 false
        
        // 迭代队列元素
        System.out.println("Queue elements:");
        for (int num : pq) {
            System.out.println(num);
        }
    }
}

4.特性与注意事项

排序规则:
PriorityQueue 基于最小堆实现,因此默认情况下,队列的头元素是最小元素(即自然顺序中最小的元素)。
你可以提供一个 Comparator 来定义自定义的排序规则。

性能:
插入元素(add() 和 offer())的时间复杂度为 O(log n)。
访问或移除队列头元素(peek()、poll()、remove())的时间复杂度为 O(log n)。

线程安全:
PriorityQueue 不是线程安全的。如果多个线程要并发访问优先队列,则建议使用线程安全的变体 PriorityBlockingQueue。

元素的排序顺序:
如果优先队列中的元素不实现 Comparable 接口,或者你没有提供 Comparator,在尝试插入时会抛出 ClassCastException。

5.常见算法解题

优先队列(PriorityQueue)在很多常见的算法问题中都能派上用场,尤其是那些涉及到排序、动态获取最值或需要高效处理数据的问题。以下是几个常见的算法题目,通常可以使用优先队列来高效解决:

5.1 Top K Frequent Elements(前 K 个高频元素)

题目描述: 给定一个非空的整数数组,返回其中出现频率前 k 高的元素。

解题思路:
使用哈希表统计每个元素的出现频率。
使用一个大小为 k 的最小堆来维护出现频率最高的 k 个元素。
代码示例:

import java.util.*;

public class TopKFrequentElements {
    public List<Integer> topKFrequent(int[] nums, int k) {
        Map<Integer, Integer> frequencyMap = new HashMap<>();
        for (int num : nums) {
            frequencyMap.put(num, frequencyMap.getOrDefault(num, 0) + 1);
        }

        PriorityQueue<Map.Entry<Integer, Integer>> minHeap = new PriorityQueue<>(
            Comparator.comparingInt(Map.Entry::getValue)
        );

        for (Map.Entry<Integer, Integer> entry : frequencyMap.entrySet()) {
            minHeap.offer(entry);
            if (minHeap.size() > k) {
                minHeap.poll();
            }
        }

        List<Integer> result = new ArrayList<>();
        while (!minHeap.isEmpty()) {
            result.add(minHeap.poll().getKey());
        }
        Collections.reverse(result);
        return result;
    }
}

5.2 Merge K Sorted Lists(合并 K 个排序链表)

题目描述: 合并 k 个排序链表,并将它们合并为一个排序链表。

解题思路:
使用一个最小堆,每次将 k 个链表的头节点加入堆中。
反复从堆中弹出最小的元素,并将下一个节点加入堆中,直到堆为空。
代码示例:

import java.util.*;

public class MergeKSortedLists {
    public ListNode mergeKLists(ListNode[] lists) {
        PriorityQueue<ListNode> minHeap = new PriorityQueue<>(Comparator.comparingInt(node -> node.val));

        for (ListNode list : lists) {
            if (list != null) {
                minHeap.offer(list);
            }
        }

        ListNode dummy = new ListNode(0);
        ListNode current = dummy;

        while (!minHeap.isEmpty()) {
            ListNode node = minHeap.poll();
            current.next = node;
            current = current.next;

            if (node.next != null) {
                minHeap.offer(node.next);
            }
        }

        return dummy.next;
    }
    
    class ListNode {
        int val;
        ListNode next;
        ListNode(int val) { this.val = val; }
    }
}

5.3 Kth Largest Element in an Array(数组中第 K 大的元素)

题目描述: 给定一个未排序的数组,找到其中第 k 个最大的元素。
解题思路:
维护一个大小为 k 的最小堆,堆顶元素即为当前的第 k 大元素。
遍历数组,将元素加入堆中,并在堆大小超过 k 时移除堆顶元素。
代码示例

import java.util.*;

public class KthLargestElement {
    public int findKthLargest(int[] nums, int k) {
        PriorityQueue<Integer> minHeap = new PriorityQueue<>();

        for (int num : nums) {
            minHeap.offer(num);
            if (minHeap.size() > k) {
                minHeap.poll();
            }
        }

        return minHeap.peek();
    }
}

5.4 Task Scheduler(任务调度器)

题目描述: 给定一组任务和一个冷却时间 n,要求设计一种调度算法使得相同任务之间至少相隔 n 个单位时间。

解题思路:
使用最大堆来存储任务,根据任务的剩余次数排序。
每次从堆中取出任务执行并将其放入等待队列,直到冷却时间结束后再重新加入堆中。

代码示例

import java.util.*;

public class TaskScheduler {
    public int leastInterval(char[] tasks, int n) {
        Map<Character, Integer> taskCounts = new HashMap<>();
        for (char task : tasks) {
            taskCounts.put(task, taskCounts.getOrDefault(task, 0) + 1);
        }

        PriorityQueue<Integer> maxHeap = new PriorityQueue<>(Collections.reverseOrder());
        maxHeap.addAll(taskCounts.values());

        int cycles = 0;
        while (!maxHeap.isEmpty()) {
            List<Integer> tempList = new ArrayList<>();
            for (int i = 0; i <= n; i++) {
                if (!maxHeap.isEmpty()) {
                    tempList.add(maxHeap.poll());
                }
            }

            for (int count : tempList) {
                if (--count > 0) {
                    maxHeap.offer(count);
                }
            }

            cycles += maxHeap.isEmpty() ? tempList.size() : n + 1;
        }

        return cycles;
    }
}

5.5 Find Median from Data Stream(数据流的中位数)

题目描述: 不断从数据流中读取整数并计算当前所有整数的中位数。

解题思路:
使用两个堆:一个最大堆存储数据流中较小的一半,另一个最小堆存储较大的一半。这样最大堆堆顶元素就是中位数。
每次插入新的数据时,根据其大小放入相应的堆中,并保持两个堆的平衡。
代码示例

import java.util.*;

public class MedianFinder {
    private PriorityQueue<Integer> lowerHalf;
    private PriorityQueue<Integer> upperHalf;

    public MedianFinder() {
        lowerHalf = new PriorityQueue<>(Collections.reverseOrder());
        upperHalf = new PriorityQueue<>();
    }

    public void addNum(int num) {
        lowerHalf.offer(num);
        upperHalf.offer(lowerHalf.poll());
        if (lowerHalf.size() < upperHalf.size()) {
            lowerHalf.offer(upperHalf.poll());
        }
    }

    public double findMedian() {
        if (lowerHalf.size() > upperHalf.size()) {
            return lowerHalf.peek();
        } else {
            return (lowerHalf.peek() + upperHalf.peek()) / 2.0;
        }
    }
}

优先队列是一种强大的数据结构,能够高效地解决一系列问题,特别是在处理需要动态获取最值或维持一定顺序的场景时。通过以上例题,可以看到优先队列在不同场景下的广泛应用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值