11. 盛最多水的容器

目录

一、问题描述

二、解题思路

三、代码

四、复杂度分析


一、问题描述

给定一个长度为 n 的整数数组 height 。有 n 条垂线,第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。

找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。

返回容器可以储存的最大水量。

说明:你不能倾斜容器。

二、解题思路

这个问题要求我们找到两条垂直的线,计算它们与 x 轴构成的容器所能盛放的最大水量。容器的容量由两条线之间的最短线的高度和它们之间的距离决定。我们可以使用双指针的方法来解决这个问题。

核心思想:

  • 使用双指针,一个指针从数组的左端开始,另一个从数组的右端开始。
  • 每次移动较短的那条线,因为容器的容量是由较短的线决定的,移动较短的线可能会带来更大的水量。
  • 逐步计算每次的容器容量,并更新最大值。

三、代码

class Solution {
    public int maxArea(int[] height) {
        // 初始化两个指针,分别指向数组的两端
        int left = 0;  // 左指针,从数组最左端开始
        int right = height.length - 1;  // 右指针,从数组最右端开始
        // 初始化最大水量变量
        int maxArea = 0;

        // 使用双指针法,在左指针小于右指针的情况下继续遍历
        while (left < right) {
            // 计算当前容器的宽度,即两个指针之间的距离
            int width = right - left;
            // 容器的高度取决于较短的那条线
            int h = Math.min(height[left], height[right]);
            // 计算当前的水量,即宽度乘以高度
            int currentArea = width * h;
            // 更新最大水量,取当前水量和之前的最大水量中的较大值
            maxArea = Math.max(maxArea, currentArea);

            // 移动较短的那条线的指针,以期找到更高的线从而增大水量
            if (height[left] < height[right]) {
                left++;  // 如果左边的线较短,移动左指针
            } else {
                right--;  // 如果右边的线较短,移动右指针
            }
        }

        // 返回最大水量
        return maxArea;
    }
}

四、复杂度分析

  • 时间复杂度:O(n),n 是数组的长度。我们只遍历数组一次,每次只移动一个指针。
  • 空间复杂度:O(1),我们只使用了常数级别的额外空间。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值