定义
探讨一个有趣的数学问题
众所周知,反比例函数的图像是双曲线,其在二维的直角坐标系上可以构成许多有规律的图形
假设有两个反比例函数:,
y1、y2两个函数,一个是双曲线,一个是单曲线,且k2×k1<0
那么,其在坐标系上构成的矩形被x轴y轴划分后,各个象限的各部分面积关系符合a²、b²、ab
这么说可能有些抽象,所以我们可以画图来具象化这个设定
已知 点A、C在y=-1/x上,点B在y=2/x上
其中 面积S1的数值在数字上充当a²,S4则为b²,S2=S3为ab
为了验证这个猜想,我们可以构建代码来寻求普遍规律
double k1,k2,x1,y,y2,x2,y3,x3,y4,x4;
首先,先把各个点、参数定义出来
int a;
cout<<