C++趣味实验之:反比例函数的象限矩形面积关系

定义

探讨一个有趣的数学问题

众所周知,反比例函数的图像是双曲线,其在二维的直角坐标系上可以构成许多有规律的图形

假设有两个反比例函数:eq?y1%3D%5Cfrac%7Bk1%7D%7Bx%7D,eq?y2%3D%5Cfrac%7Bk2%7D%7Bx%7D

y1、y2两个函数,一个是双曲线,一个是单曲线,且k2×k1<0

那么,其在坐标系上构成的矩形被x轴y轴划分后,各个象限的各部分面积关系符合a²、b²、ab

这么说可能有些抽象,所以我们可以画图来具象化这个设定

6634d708850142e5afb437ec8fe6a737.png

已知 点A、C在y=-1/x上,点B在y=2/x上

其中 面积S1的数值在数字上充当a²,S4则为b²,S2=S3为ab

为了验证这个猜想,我们可以构建代码来寻求普遍规律

double k1,k2,x1,y,y2,x2,y3,x3,y4,x4;

首先,先把各个点、参数定义出来

    int a;
	cout<<
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值