题目一:是否完全二叉搜索树
将一系列给定数字顺序插入一个初始为空的二叉搜索树(定义为左子树键值大,右子树键值小),你需要判断最后的树是否一棵完全二叉树,并且给出其层序遍历的结果。
输入格式:
输入第一行给出一个不超过20的正整数N
;第二行给出N
个互不相同的正整数,其间以空格分隔。
输出格式:
将输入的N
个正整数顺序插入一个初始为空的二叉搜索树。在第一行中输出结果树的层序遍历结果,数字间以1个空格分隔,行的首尾不得有多余空格。第二行输出YES
,如果该树是完全二叉树;否则输出NO
。
输入样例1:
9
38 45 42 24 58 30 67 12 51
输出样例1:
38 45 24 58 42 30 12 67 51
YES
输入样例2:
8
38 24 12 45 58 67 42 51
输出样例2:
38 45 24 58 42 12 67 51
NO
AC代码:
#include<bits/stdc++.h>
using namespace std;
int a[100];//利用二叉树结点编号的特点,使用int数组存树
int mmax=1;
int root;
void insert(int x)
{
int id=1;
while(a[id]!=0)//找插入位置
{
if(x>a[id]) id=id*2;//左孩子下标
else id=id*2+1;//右孩子下标
}
a[id]=x;
mmax=max(id,mmax);//更新最大编号
}
int main()
{
int n;
cin>>n;
cin>>root;
a[1]=root;//由于题目说将输入的N个正整数'顺序'插入一个初始为空的二叉搜索树,隐含第一个输入的数即是树的根
for(int i=1;i<n;i++)
{
int x;
cin>>x;
insert(x);
}
cout<<root;
for(int i=2;i<=mmax;i++)//因为是数组存树,所以遍历数组即是树的层序遍历
{
if(a[i])
cout<<" "<<a[i];
}
//要判断是否完全,看最大编号是否为n就行
if(mmax==n) cout<<"\nYES";
else cout<<"\nNO";
return 0;
}
题目二:完全二叉搜索树
一个无重复的非负整数序列,必定对应唯一的一棵形状为完全二叉树的二叉搜索树。本题就要求你输出这棵树的层序遍历序列。
输入格式:
首先第一行给出一个正整数 N(≤1000),随后第二行给出 N 个不重复的非负整数。数字间以空格分隔,所有数字不超过 2000。
输出格式:
在一行中输出这棵树的层序遍历序列。数字间以 1 个空格分隔,行首尾不得有多余空格。
输入样例:
10
1 2 3 4 5 6 7 8 9 0
输出样例:
6 3 8 1 5 7 9 0 2 4
AC代码:
#include<bits/stdc++.h>
using namespace std;
int n,num=1;
int a[1005],level[1005];
//int res[1005];
void dfs(int t)
{//对层序中第t个数为根的子树进行中序遍历
if(t>n) return;//t超出范围
dfs(t*2);//遍历左子树
level[t]=num++;//层序的第t个数是中序的第num个数
// res[t]=a[num++];
dfs(t*2+1); //右子树
}
int main()
{
cin>>n;
for(int i=1;i<=n;i++)
{
cin>>a[i];
}
//由于二叉搜索树的结点值的特点,排序后的序列就是这颗完全二叉树的中序遍历
sort(a+1,a+n+1);
dfs(1);
for(int i=1;i<=n;i++)
{
if(i!=1) cout<<" ";
cout<<a[level[i]];
// cout<<res[i];
}
return 0;
}
题目三:完全二叉树的层序遍历
一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是完美二叉树。对于深度为 D 的,有 N 个结点的二叉树,若其结点对应于相同深度完美二叉树的层序遍历的前 N 个结点,这样的树就是完全二叉树。
给定一棵完全二叉树的后序遍历,请你给出这棵树的层序遍历结果。
输入格式:
输入在第一行中给出正整数 N(≤30),即树中结点个数。第二行给出后序遍历序列,为 N 个不超过 100 的正整数。同一行中所有数字都以空格分隔。
输出格式:
在一行中输出该树的层序遍历序列。所有数字都以 1 个空格分隔,行首尾不得有多余空格。
输入样例:
8
91 71 2 34 10 15 55 18
输出样例:
18 34 55 71 2 10 15 91
AC代码:
#include<bits/stdc++.h>
using namespace std;
int res[31];
int n;
int cnt=1;
void postorder(int a[],int t)
{
if(t>n) return;
postorder(a,t*2);
postorder(a,t*2+1);
res[t]=a[cnt++];
}
int main()
{
cin>>n;
int a[31];
for(int i=1;i<=n;i++)
cin>>a[i];
postorder(a,1);
for(int i=1;i<=n;i++)
{
if(i>1) cout<<" ";
cout<<res[i];
}
return 0;
}