这道题从整体来看确实让人有点无从下手,你要是一层一层地去看问题复杂了。这个时候需要我们从每个结点出发,单单看每个结点的话它的左右孩子就很好交换了,直接swap(root->left,root->right)。如果每个结点都进行这个操作,那翻转二叉树就完成了。
接下来就是考虑如何遍历结点,最直观也是最容易想到的就是层序遍历和递归了。其中递归又分前、中、后序遍历。但是这里中序遍历不好用。拿实例一来看,我们将2的子节点交换玩之后(先左)就是交换4的子节点了(再中),4交换完就该右节点了(再右)。这是问题就来了,4的右节点还是2,这就造成2的子节点变换了两次,7的子节点没有交换。
递归方法:
TreeNode* invertTree(TreeNode* root) {
if(root==nullptr) return root;
if(root->left!=nullptr || root->right!=nullptr)
swap(root->left,root->right);
invertTree(root->left);
invertTree(root->right);
return root;
}
层序遍历:
TreeNode* invertTree(TreeNode* root) {
queue<TreeNode*> qu;
int size=0;
if(root==nullptr) return root;
qu.push(root);
size++;
while(!qu.empty())
{
TreeNode* temp;
temp=qu.front();
if(temp->left) qu.push(temp->left);
if(temp->right) qu.push(temp->right);
if(temp->left!=nullptr||temp->right!=nullptr) swap(temp->left,temp->right);
qu.pop();
size--;
if(size==0)
{
size=qu.size();
}
}
return root;
}
这里要注意是每个结点的左右子树的高度差不超过1,这就需要我们对每个结点都要进行一个相同的操作,那肯定就是要遍历每个结点了。这里我们要把每个结点都看成是一棵树,而不单单是一个结点。然后我们如果再能得出当前结点root的左右子树高度的话,那就可以直接对比两颗子树的高度差了。至于当前结点root的高度,我们只需要取root的左右子树中较大的高度再+1就是当前结点的高度了。
那现在问题就是如何求每个结点的高度了。处于最下层的高度肯定是最小的,越靠近根节点高度越大。根据这个规律我们可以从下往上一层一层地加,而恰恰后序遍历就符合这样的规律。后序遍历会访问到最底层后,再进行操作,然后一层一层返回。
class Solution {
public:
int Height(TreeNode* root)
{
if(root==nullptr) return 0; //确定结束条件
int leftH=Height(root->left); //得到左子树的高度
if(leftH==-1) return -1;
int rightH=Height(root->right); //得到右子树的高度
if(rightH==-1) return -1;
int h=abs(leftH-rightH); //得到左右子树的高度差
if(h>1) return -1; //因为一旦某个结点不是平衡二叉树那么整棵树也就不是了,-1会直接一层一层返回到根节点
else return max(rightH,leftH)+1; //到这一步那该结点肯定是平衡二叉树了,就将它的高度返回
}
bool isBalanced(TreeNode* root) {
if(root==nullptr) return true; //要先判断是否为空,因为函数Height的参数不能传空值
if(Height(root)==-1) return false;
return true;
}
};
题目要求返回从根节点到叶子结点的路径,这里比较符合前序遍历。每遍历一个结点就将该结点放进一个容器中,当返回上一个结点时就将当前的节点从容器中移除。不断去维护这个容器。遇到当前结点的左右子节点为空时,就将容器中的值赋值给结果容器。前序遍历+回溯
class Solution {
public:
vector<string> ans,temp; //使用vector容器是因为它便于存储、移除,string操作不太方便
void traverse(TreeNode* root)
{
if(root==nullptr) return; //结束条件
temp.push_back(to_string(root->val));
traverse(root->left);
traverse(root->right);
//将容器中的值赋值给结果容器
if(root->left==root->right)
{
string s;
for(int i=0;i<temp.size();i++)
{
s+=temp[i];
if(i!=temp.size()-1)
s+="->";
}
ans.push_back(s);
}
//返回上一个结点前弹出当前结点
temp.pop_back();
}
vector<string> binaryTreePaths(TreeNode* root) {
traverse(root);
return ans;
}