- 博客(11)
- 收藏
- 关注
原创 Ai coding实战:搭建简易记单词demo
本文以搭建简易记单词 demo 为例,展示 AI coding 与人类协同开发实践。项目针对单词学习中查记分离、分类混乱、复习无据等痛点,用 Python 实现查词缓存、话题分类、艾宾浩斯复习算法等功能。开发中 AI 辅助代码实现,人类主导架构与核心逻辑,快速完成可用 MVP,为 AI 协作开发提供实战参考。
2025-08-17 19:59:23
1100
原创 多模态实操总结篇:创新体系
本篇面向对多模态AI感兴趣的本科生、研究生,以及希望了解多模态前沿方向的科研人员。无论你是初学者还是有一定基础的研究者,都能在本框架中找到适合自身成长与创新的切入点。
2025-07-09 22:25:15
1207
原创 多模态实操第五期:多模态融合方法
图像模态:BasicCNN (0.7471) 表现最佳文本模态:Basic1DCNN (0.6226) 表现稳定网页模态:Basic1DCNN (0.6310) 表现稳定单模态CNN平均:约0.67,为多模态融合提供了重要对比基准。
2025-07-06 09:43:30
1589
原创 多模态实操第四期:网页信息(HTML)
本期聚焦于MR2数据集的网页(HTML)模态,系统讲解多种文本建模方法(Basic1DCNN、TextCNN、Transformer、BERT)在网页信息谣言检测中的应用、工程实现、超参数调优与实验对比。所有代码均可复现,适合科普教学与工程入门。
2025-07-05 17:26:43
789
原创 多模态实操第三期:文本分类模型与Optuna超参数调优
本期聚焦于MR2数据集的文本模态,详细讲解多种文本分类模型(FastText、TextCNN、Basic1DCNN、Transformer)的原理、工程实现、超参数调优与实验记录。所有代码均可复现,适合科普教学与工程入门。如有问题或建议,欢迎在评论区留言交流。
2025-07-04 20:41:50
1394
原创 多模态实操第二期:2D-CNN在谣言检测中的应用
本期专栏聚焦于MR2数据集的图像模态,系统梳理了主流2D-CNN模型在谣言检测中的应用与工程实践。内容涵盖模型原理、工程实现、自动调参、实验对比与实用经验,适合多模态AI初学者与工程师参考。
2025-07-03 23:25:12
937
原创 多模态实操第一期:多模态AI是什么?能做什么?
在日常生活中,我们每时每刻都在用多种感官感知世界:眼睛看、耳朵听、嘴巴说、手脚动。AI要想真正"聪明",也必须学会像人一样,融合多种信息源。这就是多模态AI的核心目标。举个例子,智能音箱不仅能听懂你的语音指令,还能识别你上传的图片,甚至能根据你的语气判断情绪。这背后,就是多模态AI的功劳。多模态AI(Multimodal AI)指的是能够同时处理和理解多种类型数据(如图像、语音、文本、传感器信号等)的人工智能系统。相比传统的"单模态AI"(只处理一种数据类型),多模态AI更贴近真实世界的复杂性。
2025-07-01 17:52:06
1080
原创 为什么你的LLM回答总是不准确?这3个提示词技巧帮你解决
提示词工程是一门专门研究如何设计、优化和调试与大语言模型交互的输入文本,以获得期望输出的技术。它结合了语言学、心理学和计算机科学的原理,是AI应用开发的关键技能。请总结我们之前的讨论要点,并以Markdown格式输出为process.md文件,包含:1. 已解决的问题2. 达成的共识3. 待进一步讨论的议题RLHF(Reinforcement Learning from Human Feedback,基于人类反馈的强化学习)是一种通过人类反馈优化语言模型行为的技术,旨在使模型输出更符合人类价值观。
2025-06-30 11:39:16
985
原创 负置信度损失函数:“是什么”与“不是什么”的讨论
负置信度方法为深度学习分类任务提供了一种全新的思路。通过让模型同时学习"是什么"和"不是什么",目前来看提高了分类准确率,还为模型提供了更丰富的认知表达,但是其核心部分代码可能存在错误欢迎指正。更强的判别能力: 双重学习机制更好的不确定性建模: 负值表示强烈否定更丰富的语义表达: 不仅知道答案,还知道为什么不是其他答案后续我们将继续探索三元置信度系统,进一步推进深度学习中的不确定性建模研究。参考资料PyTorch官方文档深度学习中的不确定性建模负置信度相关研究作者简介。
2025-06-25 09:28:25
783
原创 Food-11 图像分类 – 不平衡样本
探索 LDAM、Class-Balanced Loss 等更细粒度重加权策略,以及在目标检测、语义分割中的适配。:依赖预训练 ViT + 双重重采样即可显著缓解不平衡,无需大规模调参。:保证每个 mini-batch 均包含足量少数类,稳定优化方向。扩展为多标签向量或配合 Focal Loss,可覆盖更广泛任务。:方法与数据、网络结构弱耦合,可快速迁移到其他分类任务。仅需重新统计类别频次,权重与采样器即可自动适配。,并验证方法在其他数据集上的可迁移性。损失与采样模块与主干解耦,可直接复用。
2025-06-07 22:19:09
584
1
多模态实践项目全文件包含单模态文件
2025-07-09
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人