背包问题小结

背包问题基础

二维数组01背包

即dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。

dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);

遍历物品和遍历背包大小 两层for循环都可以

一维数组01背包

dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j]。

dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

外层for循环遍历物品 内层for循环遍历背包大小 从大到小遍历 即逆序遍历
逆序遍历的原因是为了保证每个物品只能用一次,正序的话,会有很多次

背包问题递推公式

问能否装满背包

dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]); 

问背包装满最大价值:

dp[j] :装满容量为j的背包,最大价值为多少
一般是先遍历物品,在遍历背包容量

dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

问装满背包所需物品的最小个数

dp[j] :装满容量为j的背包,需要物品的最小个数为dp[j]
外层容量,内层 物品

dp[j] = min(dp[j - coins[i]] + 1, dp[j])

问装满背包有几种方法

dp[j]:装满容量为j的背包,有dp[j]种方法
外层容量 内层物品

dp[j] += dp[j - nums[i]] 

可以最难理解的地方,可以参考爬楼梯,参考这篇题解:兑换零钱2
讲的非常nice,大概总结概括就是下面的:

DP[i] = DP[i-1] + DP[i-2] + DP[i-5]

加个循环就变成了

DP[i] += DP[i-coin] ;

背包遍历顺序

01背包

二维dp数组01背包先遍历物品还是先遍历背包都是可以的,且第二层for循环是从小到大遍历。
一维dp数组01背包只能先遍历物品再遍历背包容量,且第二层for循环是从大到小遍历
逆序遍历的原因是为了保证每个物品只能用一次,正序的话,会有很多次

完全背包

先遍历物品还是先遍历背包都是可以的,且第二层for循环是从小到大遍历。

如果求组合数就是外层for循环遍历物品,内层for遍历背包。
如果求排列数就是外层for遍历背包,内层for循环遍历物品。

你就想爬楼梯 求得是方法,每一步的顺序有关,那就是求排列数 外层遍历楼梯高度(背包容量),内层遍历步数(物品)

兑换硬币|| 求的是组合,每一步与顺序无关,所以先遍历,物品 在遍历 容量

参考文章:代码随想录

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值