背包问题基础
二维数组01背包
即dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。
dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
遍历物品和遍历背包大小 两层for循环都可以
一维数组01背包
dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j]。
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
外层for循环遍历物品 内层for循环遍历背包大小 从大到小遍历 即逆序遍历
 逆序遍历的原因是为了保证每个物品只能用一次,正序的话,会有很多次
背包问题递推公式
问能否装满背包
dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]); 
问背包装满最大价值:
dp[j] :装满容量为j的背包,最大价值为多少
 一般是先遍历物品,在遍历背包容量
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
问装满背包所需物品的最小个数
dp[j] :装满容量为j的背包,需要物品的最小个数为dp[j]
 外层容量,内层 物品
dp[j] = min(dp[j - coins[i]] + 1, dp[j])
问装满背包有几种方法
dp[j]:装满容量为j的背包,有dp[j]种方法
 外层容量 内层物品
dp[j] += dp[j - nums[i]] 
可以最难理解的地方,可以参考爬楼梯,参考这篇题解:兑换零钱2 
 讲的非常nice,大概总结概括就是下面的:
DP[i] = DP[i-1] + DP[i-2] + DP[i-5]
加个循环就变成了
DP[i] += DP[i-coin] ;
背包遍历顺序
01背包
二维dp数组01背包先遍历物品还是先遍历背包都是可以的,且第二层for循环是从小到大遍历。
 一维dp数组01背包只能先遍历物品再遍历背包容量,且第二层for循环是从大到小遍历
 逆序遍历的原因是为了保证每个物品只能用一次,正序的话,会有很多次
完全背包
先遍历物品还是先遍历背包都是可以的,且第二层for循环是从小到大遍历。
如果求组合数就是外层for循环遍历物品,内层for遍历背包。
 如果求排列数就是外层for遍历背包,内层for循环遍历物品。
你就想爬楼梯 求得是方法,每一步的顺序有关,那就是求排列数 外层遍历楼梯高度(背包容量),内层遍历步数(物品)
兑换硬币|| 求的是组合,每一步与顺序无关,所以先遍历,物品 在遍历 容量
参考文章:代码随想录
 
                   
                   
                   
                   
                             
       
           
                 
                 
                 
                 
                 
                
               
                 
                 
                 
                 
                
               
                 
                 扫一扫
扫一扫
                     
              
             
                   634
					634
					
 被折叠的  条评论
		 为什么被折叠?
被折叠的  条评论
		 为什么被折叠?
		 
		  到【灌水乐园】发言
到【灌水乐园】发言                                
		 
		 
    
   
    
   
             
            


 
            