题目:
给定一个整数数组 arr
,找到 min(b)
的总和,其中 b
的范围为 arr
的每个(连续)子数组。
由于答案可能很大,因此 返回答案模 10^9 + 7
。
示例:
示例 1:
输入:arr = [3,1,2,4] 输出:17 解释: 子数组为 [3],[1],[2],[4],[3,1],[1,2],[2,4],[3,1,2],[1,2,4],[3,1,2,4]。 最小值为 3,1,2,4,1,1,2,1,1,1,和为 17。
示例 2:
输入:arr = [11,81,94,43,3] 输出:444
提示:
1 <= arr.length <= 3 * 104
1 <= arr[i] <= 3 * 104
解题:
解题思路和代码来源:超小白
解题方法一:动态规划(暴力)
注意:本解法会超出时间限制,但是抛开时间限制不谈,也是一种解法。
class Solution {
private static final int MOD = 1000000007;
public static int sumSubarrayMins(int[] arr) {
if (arr == null || arr.length == 0) {//检查是否非空
return 0;
}
int n = arr.length;//保存数组长度
long ans = 0;//保存求和结果
// 起点
for (int i = 0; i < n; i++) {
int min = arr[i];
// 终点
for (int j = i; j < n; j++) {
min = Math.min(min, arr[j]);
ans = (ans + min) % MOD;
}
}
return (int) ans;
}
public static void main(String[] args) {
int[] arr = {1, 2, 3, 4};//这里可以任意更换数组,用于测试
System.out.println(sumSubarrayMins(arr));
}
}
解析:
乍一看,这个两层循环让人摸不着头脑。但是实际上理解了解题思路,这道题就变得很简单。以我用于测试的数组为例,该数组的子数组有:
[1] [1,2] [1,2,3] [1,2,3,4]
[2] [2,3] [2,3,4]
[3] [3,4]
[4]
要注意,像[1,3] [1,3,4]这种并不算子数组,因为不连续
其实,你现在就可以根据我列出来的数组返回去看这个双重循环,外层循环就是拿到每一行第一个数组,而内层循环就是与每一行的数组进行比较(包括自身)。
当外层循环i=0时,min=arr[0]=1
内层循环表面上是分别将它和arr[1]、arr[2]、arr[3]比较
实际上是将[1]和[1,2] [1,2,3] [1,2,3,4]比较
因为[1]和自身比较得到的min肯定是自身,所以和[1,2]的比较就简化成和[2]的比较
后面也是一样,在和[2]比较完后,和[1,2,3]的比较就简化成和[3]的比较,以此类推。
解题方法二:单调栈+贡献值
import java.util.Deque;
import java.util.LinkedList;
class Solution {
private static final int MOD = 1000000007;
static int sumSubarrayMins(int[] arr) {
// 处理边界情况
if (arr == null || arr.length == 0) {
return 0;
}
int n = arr.length;
// 每个元素辐射范围的左边界
int[] left = new int[n];
// 每个元素辐射范围的右边界
int[] right = new int[n];
Deque<Integer> stack = new LinkedList<>();
// 第一次循环先找到所有元素的左边界
for (int i = 0; i < n; i++) {
// 向左找第一个小于等于E的元素
while (!stack.isEmpty() && arr[stack.peek()] > arr[i]) {
stack.pop();
}
// 设立一个最左边界-1
if (stack.isEmpty()) {
left[i] = -1;
} else {
left[i] = stack.peek();
}
// 下标入栈,方便同时得到i和A[i]
stack.push(i);
}
// 第二次循环找到所有元素的右边界
stack.clear();
for (int i = n - 1; i >= 0; i--) {
// 向右找第一个小于E的元素
while (!stack.isEmpty() && arr[stack.peek()] >= arr[i]) {
stack.pop();
}
// 设立一个最右边界n
if (stack.isEmpty()) {
right[i] = n;
} else {
right[i] = stack.peek();
}
// 下标入栈,方便同时得到i和A[i]
stack.push(i);
}
// 按照贡献度计算即可
long ans = 0;
for (int i = 0; i < n; i++) {
ans = (ans + (long) (i - left[i]) * (right[i] - i) * arr[i]) % MOD;
}
return (int) ans;
}
public static void main(String[] args) {
int[] arr = {4, 7, 1, 7, 1};
System.out.println(sumSubarrayMins(arr));
}
}
首先,先讲这里面使用的一种数据结构Deque, 只讲使用到的特征和方法。
push方法:放入Deque中,举个例子,先push(1),再push(2)
Deque.push(1)后,Deque中:1 Deque.push(2)后,Deque中:2,1
pop方法:从Deque中取出,拿上面的Deque直接来用
第一次Deque.pop()后,Deque中:1 第二次Deque.pop()后,Deque中:
peek方法:与pop方法类似,但是只是取值而不是取出,举个例子,Deque中:2,1
Deque.peek()后,返回2,但是Deque中仍然有2,再peek()也还是返回2
接下来对解法进行讲解,我将这个解法分为三个部分:取左边界、取右边界,贡献值求和。首先对第一部分取左边界进行讲解。
取左边界
首先先给出一般的结论
- 首位必为-1
- 后一位比前一位大,取前一位下标
- 如果遇到先小后大,则需要进行分析。
// 数组长度
int n = arr.length;
// 每个元素辐射范围的左边界
int[] left = new int[n];
// 每个元素辐射范围的右边界
int[] right = new int[n];
Deque<Integer> stack = new LinkedList<>();
// 寻找所有元素的左边界
for (int i = 0; i < n; i++) {
while (!stack.isEmpty() && arr[stack.peek()] > arr[i]) {
// 进入条件为stack非空并且arr[i-1] > arr[i]
// 你会说,欸不对啊,不是arr[stack.peek()] > arr[i]吗,不急,你慢慢看
stack.pop();
}
if (stack.isEmpty()) {
// 首位下标为0,左边界一定为-1
left[i] = -1;
} else {
left[i] = stack.peek();
}
// 每个元素的下标都会入栈
stack.push(i);
}
仔细观察代码,stack 被用于存放元素的下标,left 被用于存放对应元素的左边界,首位的下标为0,它对应的左边界一定是-1,这是固定的,而在进行下一次循环之前,本次循环的元素的下标一定会被放进 stack ,所以此时
stack=[0]
left[-1,0,0,0,0]
进行第二次循环,此时需要对元素进行比较,观察传入的数组可知,不满足 arr[0] > arr[1] ,所以不能进入 while 循环,不能进入 while 循环意味着不会出栈元素,所以 stack 也不为空,直接进入 else,left[1] 取值stack中最外面的元素0(不是取出),并将i入栈,此时
int[] arr = {4, 7, 1, 7, 1};
stack=[1,0]
left[-1,0,0,0,0]
进行第三次循环,arr[1] > arr[2],进入while,将stack最外层的元素1取出,并继续比较(循环条件),仍有arr[0] > arr[2],进入while,将 stack 最外层的元素0取出,至此,stack 为空,不满足while条件,满足if条件,执行left[2] = -1,入栈i,此时
int[] arr = {4, 7, 1, 7, 1};
stack=[2]
left[-1,0,-1,0,0]
进行第四次循环, 不满足arr[2] > arr[3],不能进入while循环,不能进入while循环意味着不会出栈元素,所以stack也不为空,直接进入else,left[3] 取值stack中最外面的元素2(不是取出),入栈i,此时
int[] arr = {4, 7, 1, 7, 1};
stack=[3,2]
left[-1,0,-1,2,0]
进行第五次循环,满足arr[3] > arr[4],进入while,将stack最外层的元素3取出,并继续比较(循环条件),不满足arr[2] > arr[4],不再进入while循环,stack非空,进入else,left[4] 取值stack中最外面的元素2(不是取出),并将i入栈,此时
int[] arr = {4, 7, 1, 7, 1};
stack=[4,2]
left[-1,0,-1,2,2]
至此,寻找左边界结束,回答一个问题,进入条件为stack非空并且arr[i-1] > arr[i],而不是arr[stack.peek()] > arr[i],因为无论如何,前一个元素的下标都会入栈,所以肯定需要和前一个元素进行比较。
取右边界
先说一般结论
- 末尾对应数组长度n(末尾下标+1)
- 遇到前一位比后一位大,前一位对应边界为后一位下标
- 其他情况具体分析
// 数组长度
int n = arr.length;
// 每个元素辐射范围的左边界
int[] left = new int[n];
// 每个元素辐射范围的右边界
int[] right = new int[n];
Deque<Integer> stack = new LinkedList<>();
//清空stack
stack.clear();
// 第二次循环找到所有元素的右边界
for (int i = n - 1; i >= 0; i--) {
//在每个元素首次while循环时arr[stack.peek()] >= arr[i]可看作arr[i+1] >= arr[i]
while (!stack.isEmpty() && arr[stack.peek()] >= arr[i]) {
//arr[stack.peek()] >= arr[i]就出栈stack中一个元素
stack.pop();
}
//为空则添加末尾下标+1
if (stack.isEmpty()) {
right[i] = n;
} else {
right[i] = stack.peek();
}
// 下标入栈
stack.push(i);
}
仔细观察代码,stack 被用于存放元素的下标,,并且在进入循环前会执行一次清空,right 被用于存放对应元素的右边界,与取左边界不同,右边界是从末尾开始比的,末尾的右边界一定是它的下标+1,而在进行下一次循环之前,本次循环的元素的下标一定会被放进 stack ,所以此时
int[] arr = {4, 7, 1, 7, 1};
stack=[4]
right[0,0,0,0,5]
进行第二次循环,此时需要对元素进行比较,观察传入的数组可知,不满足 arr[4] >= arr[3] ,所以不能进入 while 循环,不能进入 while 循环意味着不会出栈元素,所以 stack 也不为空,直接进入 else,right[1] 取值stack中最外面的元素4(不是取出),并将i入栈,此时
int[] arr = {4, 7, 1, 7, 1};
stack=[3,4]
right[0,0,0,4,5]
进行第三次循环,arr[3] >= arr[2],进入while,将stack最外层的元素3取出,并继续比较(循环条件),仍有arr[0] >= arr[2],进入while,将 stack 最外层的元素4取出,至此,stack 为空,不满足while条件,满足if条件,执行right[2] = 5,入栈i,此时
int[] arr = {4, 7, 1, 7, 1};
stack=[2]
right[0,0,5,4,5]
进行第四次循环, 不满足arr[2] >= arr[1],不能进入while循环,不能进入while循环意味着不会出栈元素,所以stack也不为空,直接进入else,right[1] 取值stack中最外面的元素2(不是取出),入栈i,此时
int[] arr = {4, 7, 1, 7, 1};
stack=[1,2]
right[0,2,5,4,5]
进行第五次循环,满足arr[1] >= arr[0],进入while,将stack最外层的元素1取出,并继续比较(循环条件),不满足arr[2] >= arr[0],不再进入while循环,stack非空,进入else,right[0] 取值stack中最外面的元素2(不是取出),并将i入栈,此时
int[] arr = {4, 7, 1, 7, 1};
stack=[0,2]
right[2,2,5,4,5]
贡献值求和
long ans = 0;
for (int i = 0; i < n; i++) {
ans = (ans + (long) (i - left[i]) * (right[i] - i) * arr[i]) % MOD;
}
return (int) ans;
计算贡献值,我们就需要理解一下了。首先我们知道了所有元素的左右边界,元素 i 的左边界取值范围为[left,i],,右边界的取值范围为 [i,right],所以以该元素为最小值的子数组有 (i-left)*(right-i) 个,而每个元素对最终结果的贡献都是一比一的,元素3如果是一个子数组中的最小元素,那么它对结果的贡献率就是3。所有 元素的贡献值*最小值的子数组个数之和 就是最终结果。
int[] arr = {4, 7, 1, 7, 1};
left[-1,0,-1,2,2]
right[2,2,5,4,5]