



:是用 来计算x中非零值的个数 。
在某些场景中信号x本身并不是稀疏的,但在稀疏基矩阵,的辅助变换
,z是稀疏的矩阵
范数的存在,这个问题是一个NP-hard问题,通常来说 需要遍历所有的稀疏情况才能得到最优解.
即将目标函数中的,替换为单位球
上的凸包络
矩阵的秩极小化问题是范数极小化问题的矩阵推广
其中 ,为线性映射。矩阵补全问题
是矩阵秩极小化问题的一个特例。是索引(i,j)的一个子集。

函数:通常来说是NP-hard的问题;用rank(X)的凸包络来代替它本身;
核范数是
在集合
上的凸包络,用核范数作为
的近似值,得到核范数的最小化问题:
考虑噪声项:
毫米波的虚拟信道增益矩阵中矩阵元素总个数为 p ,定义该矩阵中非零值的个数为L,定义接 收信号矩阵Y的秩为
在第 一 阶段首先利用毫米波信道的低秩性得到一 个估计的矩阵,在第二阶段将估计的
作为己 知条件,结合毫米波信道的稀疏性得到最终的信道估计结果,信道估计问题转化为解决下列两个凸问题。
将毫米波的信道估计描述为 如下带约束的凸优化问题:
,实际取值与该信道的信道路径数相关。
由于观测到的信道矩阵具有较大的维数,因此其产生了非常高的复杂度,这可能是禁止的并且难以在实际系统中实现。为了降低估计复杂度,子采样方法适于仅使用观察到的接收信号的一部分。我们采用随机采样通过合路器的信号,只输出部分观测信号的接收结构,Ω是由K个1组成的采样二进制矩阵,Ω表示Hadamard积。
在这里,我们提出了一种新的低秩信道近似算法,它考虑到毫米波信道的低秩和稀疏特性。核范数表示为矩阵奇异值之和,是矩阵秩函数的最紧凸下界。我们的目标是恢复接收信号矩阵和估计信道。核范数和1范数最小化问题可以公式化为:
其中核范数赋予其低秩性质,
的1-范数赋予其稀疏结构。
是Y的子采样矩阵,δ是可容忍误差。此外,τY和τz是通常取决于毫米波通信系统的传播路径的数量的加权因子。
ADMM Based Channel Estimation Algorithm
为了克服这个困难,我们引入两个辅助矩阵变量q和X,以以下等价形式重新表达(P1)的目标优化问题:
增广拉格朗日函数