项目介绍(山东大学软件学院2024项目实训——时空漫游者)

本文介绍了‘时空漫游’项目,旨在通过AI生成内容和VR技术,打造一个沉浸式的历史学习与文化探索平台。项目涉及数据预处理、知识图谱构建、智能对话系统开发及虚拟展览的开发,以提升用户体验和教育效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

项目目标:

项目“时空漫游”的核心目标是创建一个融合了最新人工智能生成内容(AIGC)和虚拟现实(VR)技术的开放式数字人平台,通过这个平台,用户能够与历史人物进行互动对话,以及通过VR技术体验丰富的旅游文化展示,从而提供一种全新的、沉浸式的历史学习和文化探索体验。这旨在通过高度互动和真实的虚拟体验,增强用户的教育体验,使历史教育和文化探索变得更加生动和吸引人。

项目背景:

当今迅速变化的数字时代,AIGC(人工智能生成内容)和VR(虚拟现实)技术正成为推动移动终端应用革新的关键动力。这些前沿技术的融合不仅提升了移动设备的能力,而且开辟了新的交互和内容创作方式,引领着技术的未来发展方向。

随着5G网络的普及和AI技术的突破,我们正见证着移动终端设备性能的巨大飞跃。这些技术的结合为移动设备带来了前所未有的计算能力和连接速度,使得高级交互和复杂内容创作成为可能。在这一过程中,VR技术以其独特的沉浸式体验特性,为用户打开了一个全新的虚拟世界大门,让他们能够以全新的方式体验和互动。

AIGC技术在这一变革中扮演着至关重要的角色。通过利用先进的机器学习和深度学习算法,AIGC能够自动创建或者编辑内容,包括文本、图像、视频等,这不仅提高了内容创作的效率,也为个性化内容的生成提供了无限可能。例如,AIGC技术可以根据用户的喜好和行为自动生成定制化的新闻报道、社交媒体帖子或者娱乐内容,从而为用户提供更加丰富和个性化的数字体验。

与此同时,VR技术在提供沉浸式体验方面的潜力也正在被充分挖掘。通过创建三维的虚拟环境,VR使用户能够以全新的视角和方式体验虚拟世界。无论是在游戏、教育还是在线购物等方面,VR都在为用户带来更加直观和互动的体验。随着VR头显和相关设备的不断进步和普及,这种沉浸式体验正变得越来越可观,为不同行业带来革命性的变化。

此外,随着AI技术的不断发展,AIGC和VR的结合正在打破传统内容消费的界限,创造出全新的交互模式。例如,通过AIGC技术,可以根据用户的互动和反馈实时生成或调整VR环境中的内容,从而提供更加动态和个性化的体验。这不仅增加了用户的参与度,也为各种应用场景,如虚拟教育、在线培训、远程医疗等,提供了广阔的发展空间。

AIGC和VR技术的结合正成为推动移动终端应用发展的重要力量。随着这些技术的不断进步和融合,我们可以预见,未来的移动终端将不仅仅是信息获取的工具,更将成为提供个性化、沉浸式体验的智能平台,为用户的生活带来更多的便利和乐趣。

项目内容:

数据集整合与预处理

整合至少3~5GB的多源历史文化数据,包括但不限于书籍、论文、档案、图片和视频。文本数据的准确性经过校对达到95%以上。

知识图谱构建

利用DeepKE识别并抽取预计20,000个实体关系,构建更为详尽的知识图谱。实体识别准确率提升至90%,关系抽取准确率达到90%,以增强知识图谱的可靠性和覆盖范围。

智能对话系统开发

开发一个支持至少3~5种历史话题的智能对话系统,结合知识图谱和ChatGLM确保对话内容的丰富性和深度。对话系统的准确度进一步提高至90%,同时降低响应时间至2秒以下,提升用户体验。

虚拟展览(VE)开发

开发至少2个具有历史意义的高仿真3D虚拟场景,确保每个场景的加载时间不超过5秒。通过用户调研,每个场景的用户体验评分目标提升至4/5,以确保用户对虚拟展览的满意度和沉浸感。

社区论坛搭建

在2个月内构建并运营一个功能丰富的社区论坛,通过举办线上活动、讨论等,激发用户活跃度和参与度。

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
《芋道开发指南文档-2023-10-27更新》是针对软件开发者和IT专业人士的一份详尽的资源集合,旨在提供最新的开发实践、范例代码和最佳策略。这份2023年10月27日更新的文档集,包含了丰富的模板和素材,帮助开发者在日常工作中提高效率,保证项目的顺利进行。 让我们深入探讨这份文档的可能内容。"芋道"可能是一个开源项目或一个专业的技术社区,其开发指南涵盖了多个方面,例如: 1. **编程语言指南**:可能包括Java、Python、JavaScript、C++等主流语言的编码规范、最佳实践以及常见问题的解决方案。 2. **框架与库的应用**:可能会讲解React、Vue、Angular等前端框架,以及Django、Spring Boot等后端框架的使用技巧和常见应用场景。 3. **数据库管理**:涵盖了SQL语言的基本操作,数据库设计原则,以及如何高效使用MySQL、PostgreSQL、MongoDB等数据库系统。 4. **版本控制**:详细介绍了Git的工作流程,分支管理策略,以及与其他开发工具(如Visual Studio Code、IntelliJ IDEA)的集成。 5. **持续集成与持续部署(CI/CD)**:包括Jenkins、Travis CI、GitHub Actions等工具的配置和使用,以实现自动化测试和部署。 6. **云服务与容器化**:可能涉及AWS、Azure、Google Cloud Platform等云计算平台的使用,以及Docker和Kubernetes的容器化部署实践。 7. **API设计与测试**:讲解RESTful API的设计原则,Swagger的使用,以及Postman等工具进行API测试的方法。 8. **安全性与隐私保护**:涵盖OAuth、JWT认证机制,HTTPS安全通信,以及防止SQL注入、
该是一个在 Kaggle 上发布的数据集,专注于 2024 年出现的漏洞(CVE)信息。以下是关于该数据集的详细介绍:该数据集收集了 2024 年记录在案的各类漏洞信息,涵盖了漏洞的利用方式(Exploits)、通用漏洞评分系统(CVSS)评分以及受影响的操作系统(OS)。通过整合这些信息,研究人员和安全专家可以全面了解每个漏洞的潜在威胁、影响范围以及可能的攻击途径。数据主要来源于权威的漏洞信息平台,如美国国家漏洞数据库(NVD)等。这些数据经过整理和筛选后被纳入数据集,确保了信息的准确性和可靠性。数据集特点:全面性:涵盖了多种操作系统(如 Windows、Linux、Android 等)的漏洞信息,反映了不同平台的安全状况。实用性:CVSS 评分提供了漏洞严重程度的量化指标,帮助用户快速评估漏洞的优先级。同时,漏洞利用信息(Exploits)为安全研究人员提供了攻击者可能的攻击手段,有助于提前制定防御策略。时效性:专注于 2024 年的漏洞数据,反映了当前网络安全领域面临的新挑战和新趋势。该数据集可用于多种研究和实践场景: 安全研究:研究人员可以利用该数据集分析漏洞的分布规律、攻击趋势以及不同操作系统之间的安全差异,为网络安全防护提供理论支持。 机器学习与数据分析:数据集中的结构化信息适合用于机器学习模型的训练,例如预测漏洞的 CVSS 评分、识别潜在的高危漏洞等。 企业安全评估:企业安全团队可以参考该数据集中的漏洞信息,结合自身系统的实际情况,进行安全评估和漏洞修复计划的制定。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值