- 博客(334)
- 收藏
- 关注
原创 《YOLOv8:从入门到实战》专栏介绍 & 专栏目录
本专栏涵盖了丰富的YOLOv8算法从入门到实战系列教程,专为学习YOLOv8的同学而设计,堪称全网最详细的教程!🌈🌈🌈
2024-04-04 23:03:18 4264 7
原创 《YOLOv5:从入门到实战》专栏介绍 & 专栏目录
本专栏涵盖了丰富的YOLOv5算法从入门到实战系列教程,专为学习YOLOv5的同学而设计,堪称全网最详细的教程!🌈🌈🌈
2023-09-02 19:11:35 7357 3
原创 模型训练篇 | 关于常见的10种数据标注工具介绍
数据标注工具是一种用于标记、标记和分类数字图像、音频、视频或文本等数据集的工具。数据标注工具可以自动或手动标记数据集中的对象、人脸、物体、文字等,以便机器学习模型能够理解和识别这些数据。🌈
2024-12-17 21:24:30 266
原创 番外篇 | BGF-YOLO:引入双层路由注意力、广义特征金字塔网络和第四检测头,提高YOLOv8检测性能
本文提出了一种名为BGF-YOLO的新模型,通过引入双层路由注意力、广义特征金字塔网络和第四检测头,提高YOLOv8在脑肿瘤检测中的性能,采用多层特征融合与动态稀疏注意机制以减少特征冗余。 🌈
2024-12-15 22:19:23 469
原创 番外篇 | Hyper-YOLO:超图计算与YOLO架构相结合成为目标检测新的SOTA !
Hyper-YOLO,该方法融合了超图计算以捕捉视觉特征之间复杂的高阶关联。在COCO数据集上的实验结果表明了其显著的性能优势,证明了这一复杂方法在推动目标检测领域进步中的有效性。🌈
2024-12-13 21:07:31 421
原创 番外篇 | FCE-YOLOv8:基于特征上下文激励模块的儿童手腕骨折X线影像检测
本文介绍了四种不同FCE模块(即 Squeeze-and-ExcitationSE)、Global Context (GC)、Gather-Excite (GE) 和Gaussian Context Transformer (GCT) 模块)的Feature Contextsitation-YOLOv8 (FCE-YOLOv8) 模型变种,以提高模型性能。🌈
2024-12-12 18:45:47 90
原创 番外篇 | YOLOv8-GC:全局上下文建模用于儿童手腕骨折检测
全局上下文建模在YOLOv8中对于提高儿科手腕骨折检测的准确性、减少误检和漏检以及增强模型的鲁棒性起到了重要作用。🌈
2024-12-12 17:26:15 187
原创 番外篇 | 关于YOLOv8网络结构中添加注意力机制的常见方法 | Neck网络
注意力机制是一种神经网络模型,它通过赋予输入不同的权重的处理方式,来使得模型对输入信息的处理更加关注重要的部分。注意力机制在自然语言处理、计算机视觉等领域中得到了广泛的应用。🌈
2024-12-11 23:31:10 121
原创 番外篇 | YOLO-ELA:高效的局部注意力建模,用于高性能实时缺陷检测 !
在本论文中,作者提出了一种基于高效局部注意力(ELA)模块的新型YOLOv8架构,以提高高分辨率无人机航拍图像中绝缘子缺陷检测的准确性和速度。🌈
2024-12-11 23:05:21 439
原创 小目标检测篇 | 基于改进YOLOv8网络结构的小目标检测方法
小目标检测是计算机视觉领域中的一个研究方向,相比于常规目标检测任务,小目标检测更具挑战性,因为小目标通常具有低分辨率、低对比度和模糊等特点,容易被背景干扰或遮挡。🌈
2024-12-11 22:14:28 165
原创 卷积篇 | SAConv:可切换的空洞卷积来提升目标检测性能
SAConv通过引入一个可学习的开关参数来解决这个问题,该参数可以控制卷积操作中的膨胀率。这样,网络可以根据输入数据的特征来自适应地选择合适的膨胀率,从而在不同的场景下获得更好的性能。🌈
2024-11-26 20:49:23 350
原创 模型训练篇 | 一文彻底搞懂深度学习:过拟合和欠拟合
在机器学习中,有一项非常重要的概念,那就是:过拟合(Overfitting)和欠拟合(Underfitting)。它们涉及到机器学习中常见的两种模型性能问题,分别表示模型在训练数据上表现得过于复杂或过于简单。🌈
2024-11-26 20:06:55 197
原创 番外篇 | CIB-SE-YOLOv8:针对施工现场的安全设备实时检测
本论文提出的CIB-SE-YOLOv8模型在YOLOv8n的基础上,通过引入SE注意力机制和用C2fCIB块替换某些C2f块构建而成。实验结果证明,本论文所提出的新算法对施工现场的安全设备实时检测具有明显的改进效果。🌈
2024-11-25 19:50:14 207
原创 卷积篇 | YOLOv8改进之引入基于小波变换的新型卷积WTConv | ECCV 2024
这篇文章介绍了一种新型卷积层WTConv,它利用小波变换有效地扩大了卷积神经网络的感受野而不显著增加参数量,从而提升了网络性能。WTConv层可以作为现有CNN架构的直接替代,并在图像分类、语义分割和物体检测等多个计算机视觉任务中展示了其有效性。🌈
2024-11-25 19:39:19 337
原创 卷积篇 | WTConv:小参数大感受野,基于小波变换的新型卷积 | ECCV 2024
文章介绍了一种名为WTConv的新型卷积层,它利用小波变换(WT)来增加卷积神经网络(CNNs)的感受野,而无需大幅增加可训练参数的数量。🌈
2024-11-25 19:26:37 482
原创 特征融合篇 | CARAFE:轻量级通用上采样算子,可提高目标检测性能
CARAFE算子能够根据像素之间的关系进行自适应的上采样,从而更好地保留图像的细节和语义信息。🌈
2024-11-18 20:19:41 406
原创 注意力机制篇 | YOLO11改进之引入高效多尺度注意力模块EMA | 即插即用,助力涨点
通过在不同尺度上捕捉输入数据的特征,让模型同时关注局部细节和全局结构,以提高对细节和上下文信息的理解,达到提升模型的表达能力、泛化性、鲁棒性和定位精度,优化资源使用效率的效果。🌈
2024-11-18 19:51:39 233
原创 源码解析篇 | YOLO11:计算机视觉领域的新突破 !对比YOLOv8如何 ?
作为Ultralytics YOLO系列实时目标检测器的最新迭代,YOLO11凭借尖端的准确性、速度和效率,重新定义了性能极限,为目标检测、分割、分类、定向边界框检测以及姿态估计等多样计算机视觉任务树立了新标杆。🌈
2024-11-04 21:53:44 2072
原创 模型训练篇 | YOLO11来了!手把手教你如何用YOLO11训练自己的数据集(含算法介绍 + 网络结构 + 模型训练等)
YOLO11是一个尖端的、最先进(SOTA)的模型,基于之前YOLO版本的成功,并引入了新功能和改进以进一步提升性能和灵活性。YOLO11被设计得快速、准确且易于使用,是进行广泛对象检测和跟踪、实例分割、图像分类和姿态估计任务的理想选择。🌈
2024-11-03 22:42:26 3076
原创 番外篇 | 超越SOTA !YOLOv8-ResCBAM集成注意力机制以提高检测性能 !
该论文介绍了一种基于YOLOv8模型的改进算法YOLOv8-ResCBAM,用于儿童腕部骨折检测。该算法通过在YOLOv8网络架构中集成了卷积块注意力模块和残差块来提升模型性能,探讨了不同输入图像尺寸对模型性能的影响,并提出了将YOLOv8-ResCBAM作为计算机辅助诊断工具,以协助外科医生分析X光图像,减少骨折检测中的误判可能性。🌈
2024-10-30 21:09:03 235
原创 番外篇 | 史上最全的关于CV的一些经典注意力机制代码汇总
在计算机视觉(CV)中,注意力机制是一种能够让模型关注和重视输入数据中的某些部分的方法。它通常用于图像识别和分类任务,以增强模型对输入数据的理解。🌈
2024-10-16 19:21:07 889 2
原创 检测头篇 | 手把手教你如何去更换YOLOv8的检测头为ASFF_Detect
自适应空间特征融合(ASFF)的主要原理旨在解决单次检测器中不同尺度特征的不一致性问题。具体来说,ASFF通过动态调整来自不同尺度特征金字塔层的特征贡献,确保每个检测对象的特征表示是一致且最优的。本文所做出的改进是将YOLOv8的检测头更换为ASFF_Detect。🌈
2024-10-15 16:19:25 1337 1
原创 番外篇 | 常用的激活函数汇总 | 20+种激活函数介绍及其公式、图像等
激活函数(Activation Function)是神经网络中的一种重要概念,用于控制神经网络中神经元的激活方式。激活函数通常被定义为神经元的输出与其输入之间的关系,并能够为神经网络提供非线性特性,这对于解决某些复杂问题(如分类和回归)非常重要。🌈
2024-10-13 21:01:13 924 4
原创 损失函数篇 | YOLOv8更换损失函数之SlideLoss | 解决简单样本和困难样本之间的不平衡问题
SlideLoss是一种新颖的损失函数,可以有效地解决YOLO算法在处理小目标和密集目标时的问题。本文所做出的改进是在YOLOv8算法中引入SlideLoss损失函数。🌈
2024-10-13 13:43:03 1359 6
原创 注意力机制篇 | 清华大学提出Focused Linear Attention取代Self-Attention成为ViT的新宠
Focused Linear Attention(聚焦线性注意力)是一种用于视觉Transformer模型的注意力机制,旨在提高效率和表现力,它解决了传统线性注意力方法的两个主要问题:聚焦能力和特征多样性。🌈
2024-10-13 12:04:17 482
原创 模型训练篇 | 关于yolov8算法训练评估指标详解
在采用YOLOv8算法训练完成后,需要对算法训练效果进行评价,主要包括指标有精确率(Precision)、召回率(Recall)、交并比(IoU)、平均精度(AP)和多个类别AP的平均值即mAP等等。本节课就给大家重点介绍下相关评价指标及其含义,希望大家学习之后能够有所收获!🌈
2024-10-13 09:59:33 701
原创 番外篇 | CAF-YOLO,融合卷积与Transformer优势,实现微小物体的高精度检测
主流的深度学习模型常常在通用视觉领域表现良好,然而在医学图像的病变识别和定位都缺乏必要的精确度,无法检测到微小细胞。对此本文介绍一种基于YOLOv8架构的CAF-YOLO方法,该方法通过在多个尺度上提取特征来提高多尺度信息汇聚,在BCCD和LUNA16数据集上表现出优异的性能!🌈
2024-10-09 17:14:12 292
原创 番外篇 | CRAS-YOLO:基于卫星图像的多类别船舶检测和分类
针对传统基于卫星图像的多类别船舶检测和分类检测效果不佳的情形,我们提出了一种新的多类船检测,称为CRAS-YOLO,它由卷积块注意力模块(CBAM)、感受野块(RFB)和基于YOLOv5s的自适应空间特征融合(ASFF)组成。🌈
2024-10-07 14:07:09 1009 2
原创 番外篇 | 应对遮挡挑战,北航提出新型模型YOLOv5-FFM表现优异
在本文中,作者提出了一种改进的轻量级YOLOv5-FFM模型来解决行人检测遮挡问题。实验结果显示,与原始的yolov5s模型相比,作者的方法的平均精确度(AP)显著提高,参数数量减少了27.9%,浮点运算(FLOPs)减少了19.0%。🌈
2024-09-28 23:55:43 220
原创 番外篇 | 复现AC-YOLOv5,进行自动化织物缺陷检测
我们提出了一种基于AC-YOLOv5的新型纺织缺陷检测方法。将空洞空间金字塔池化(ASPP)模块引入YOLOv5主干网络中,提出了squeeze-and-excitation(CSE)通道注意力模块,并将其引入到YOLOv5主干网络中。🌈
2024-09-28 22:30:09 584
原创 注意力机制篇 | YOLOv8改进之在C2f模块引入EffectiveSE注意力模块 | 基于SE注意力
EffectiveSE(Effective Squeeze-Excitation) 是一种改进的通道注意力模块,其目的是在保持模型性能的同时减少计算复杂性和信息丢失。它基于原始的 Squeeze-Excitation (SE) 模块,但通过一些关键的改进来提高效率。🌈
2024-09-25 23:49:29 345
原创 注意力机制篇 | YOLOv8改进之引入NAMAttention注意力机制 | 基于标准化的注意力模块
本文提出一种基于归一化的注意力模块(NAM),可以降低不太显著的特征的权重,这种方式在注意力模块上应用了稀疏的权重惩罚,这使得这些权重在计算上更加高效,同时能够保持同样的性能。我们在ResNet和MobileNet上和其他的注意力方式进行了对比,我们的方法可以达到更高的准确率。🌈
2024-08-15 18:37:50 466
原创 神经网络的数学原理
人工智能技术的发展与成功应用已经成为21世纪科技领域最大的新现象。然而,科学地理解人工智能原理已经超出了现有科学体系的范畴。显然,人工智能是人类科学技术发展的必然结果,人工智能科学也将是人类科学进步与发展必然实现的目标🌈
2024-08-14 22:46:57 847
原创 毕业/期刊论文发表必备:YOLOv5 / v7 / v8 /v10算法网络结构图【文末提供原型文件下载地址】
YOLOv5/v7/v8/v10算法网络结构图及原型文件下载地址。🌈
2024-07-21 22:13:45 686
原创 注意力机制篇 | YOLOv8改进之在C2f模块引入Global Context注意力模块 | 全局上下文注意力机制
GCNet的核心思想是在每个残差块之后添加一个全局上下文模块(即本文的Global Context注意力模块),该模块能够捕捉全局信息,并以此来改进局部特征的学习,从而提高模型的识别精度。🌈
2024-07-13 09:58:17 1572
原创 论文发表作图必备:训练结果对比,多结果绘在一个图片【Precision】【Recall】【mAP0.5】【mAP0.5-0.95】【loss】
本文所介绍的作图教程适用于所有YOLO系列版本算法,接下来就以YOLOv8算法为例进行说明。🌈
2024-07-11 22:14:55 1672 1
原创 干货:如何高效检索和阅读文献
高效检索和阅读文献是科研过程中非常重要的一环,它能够帮助我们快速找到所需的信息并进行深入的学习和理解。本文就说明一下如何高效检索和阅读文献。🌈
2024-07-11 20:52:55 1070 1
原创 文学式开发工具 Jupyter Notebook
为什么说Jupyter Notebook是文学式开发工具?因为Jupyter Notebook将代码、说明文本、数学方程式、数据可视化图表内容全部组合到一起并显示在一个共享的文档中,可以实现一边写代码一边记录的效果。🌈
2024-07-11 18:12:33 1081
原创 特征融合篇 | YOLOv10改进之在Neck网络中添加加权双向特征金字塔BiFPN
在计算机视觉任务中,特征金字塔网络(FPN)是一种常用的方法,它通过构建不同尺度的特征图来捕获不同尺度的目标。然而,传统的FPN存在一些缺点,如特征融合效率低、信息流通不充分等。BIFPN则通过引入双向的特征融合机制和加权的特征融合方法来克服这些问题。🌈
2024-07-10 21:43:49 2018 2
港口物流协同优化算法设计
2025-01-15
产品经理Axure元件库+案例+效果
2024-12-17
产品经理大数据可视化100款看板原型设计.rp
2024-12-10
yolov10完整源码+权重文件
2024-07-03
《番外篇 - YOLOv8算法解析和实战应用:车辆检测 + 车辆追踪 + 行驶速度计算》
2024-06-21
《番外篇 - 利用YOLOv5实现视频划定区域目标统计计数》完整代码
2024-04-05
《主干网络篇 - YOLOv8更换主干网络之GhostNet》完整源码
2024-03-23
《主干网络篇 - YOLOv8更换主干网络之ShuffleNetV2(包括完整代码+添加步骤+网络结构图)》完整源码
2024-03-16
明火烟雾算法检测数据集
2024-03-05
《番外篇 - YOLOv5+DeepSort实现行人目标跟踪检测》完整代码
2024-02-24
yolov8完整源码+权重文件
2024-02-03
《YOLOv5改进 - 添加CA注意力机制 + 增加预测层 + 更换损失函数之GIoU》完整代码
2024-02-02
yolov7-v0.1(完整源码+环境配置+权重文件)-改进版
2024-01-14
yolov7-v0.1(完整源码+环境配置+权重文件)
2024-01-08
OpenCV基础知识(10)- 人脸识别项目完整代码
2023-09-05
非极大值抑制原理解析及实现流程
2023-08-18
YOLO算法发展历程及改进
2023-08-18
安全帽佩戴检测数据集(使用YOLOv5进行模型训练)
2023-08-14
智能监控系统软件设计.pptx
2023-07-30
元宇宙详细介绍.pptx
2023-03-10
产品经理必须学会的流程图总结
2023-03-07
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人