自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

突然好想你

步兵,一步一步一步走出来的兵!

  • 博客(334)
  • 收藏
  • 关注

原创 《YOLOv8:从入门到实战》专栏介绍 & 专栏目录

本专栏涵盖了丰富的YOLOv8算法从入门到实战系列教程,专为学习YOLOv8的同学而设计,堪称全网最详细的教程!🌈🌈🌈

2024-04-04 23:03:18 4264 7

原创 《YOLOv5:从入门到实战》专栏介绍 & 专栏目录

本专栏涵盖了丰富的YOLOv5算法从入门到实战系列教程,专为学习YOLOv5的同学而设计,堪称全网最详细的教程!🌈🌈🌈

2023-09-02 19:11:35 7357 3

原创 模型训练篇 | 关于常见的10种数据标注工具介绍

数据标注工具是一种用于标记、标记和分类数字图像、音频、视频或文本等数据集的工具。数据标注工具可以自动或手动标记数据集中的对象、人脸、物体、文字等,以便机器学习模型能够理解和识别这些数据。🌈

2024-12-17 21:24:30 266

原创 番外篇 | BGF-YOLO:引入双层路由注意力、广义特征金字塔网络和第四检测头,提高YOLOv8检测性能

本文提出了一种名为BGF-YOLO的新模型,通过引入双层路由注意力、广义特征金字塔网络和第四检测头,提高YOLOv8在脑肿瘤检测中的性能,采用多层特征融合与动态稀疏注意机制以减少特征冗余。 🌈

2024-12-15 22:19:23 469

原创 番外篇 | Hyper-YOLO:超图计算与YOLO架构相结合成为目标检测新的SOTA !

Hyper-YOLO,该方法融合了超图计算以捕捉视觉特征之间复杂的高阶关联。在COCO数据集上的实验结果表明了其显著的性能优势,证明了这一复杂方法在推动目标检测领域进步中的有效性。🌈

2024-12-13 21:07:31 421

原创 番外篇 | FCE-YOLOv8:基于特征上下文激励模块的儿童手腕骨折X线影像检测

本文介绍了四种不同FCE模块(即 Squeeze-and-ExcitationSE)、Global Context (GC)、Gather-Excite (GE) 和Gaussian Context Transformer (GCT) 模块)的Feature Contextsitation-YOLOv8 (FCE-YOLOv8) 模型变种,以提高模型性能。🌈

2024-12-12 18:45:47 90

原创 番外篇 | YOLOv8-GC:全局上下文建模用于儿童手腕骨折检测

全局上下文建模在YOLOv8中对于提高儿科手腕骨折检测的准确性、减少误检和漏检以及增强模型的鲁棒性起到了重要作用。🌈

2024-12-12 17:26:15 187

原创 番外篇 | 关于YOLOv8网络结构中添加注意力机制的常见方法 | Neck网络

注意力机制是一种神经网络模型,它通过赋予输入不同的权重的处理方式,来使得模型对输入信息的处理更加关注重要的部分。注意力机制在自然语言处理、计算机视觉等领域中得到了广泛的应用。🌈

2024-12-11 23:31:10 121

原创 番外篇 | YOLO-ELA:高效的局部注意力建模,用于高性能实时缺陷检测 !

在本论文中,作者提出了一种基于高效局部注意力(ELA)模块的新型YOLOv8架构,以提高高分辨率无人机航拍图像中绝缘子缺陷检测的准确性和速度。🌈

2024-12-11 23:05:21 439

原创 小目标检测篇 | 基于改进YOLOv8网络结构的小目标检测方法

小目标检测是计算机视觉领域中的一个研究方向,相比于常规目标检测任务,小目标检测更具挑战性,因为小目标通常具有低分辨率、低对比度和模糊等特点,容易被背景干扰或遮挡。🌈

2024-12-11 22:14:28 165

原创 卷积篇 | SAConv:可切换的空洞卷积来提升目标检测性能

SAConv通过引入一个可学习的开关参数来解决这个问题,该参数可以控制卷积操作中的膨胀率。这样,网络可以根据输入数据的特征来自适应地选择合适的膨胀率,从而在不同的场景下获得更好的性能。🌈

2024-11-26 20:49:23 350

原创 模型训练篇 | 一文彻底搞懂深度学习:过拟合和欠拟合

在机器学习中,有一项非常重要的概念,那就是:过拟合(Overfitting)和欠拟合(Underfitting)。它们涉及到机器学习中常见的两种模型性能问题,分别表示模型在训练数据上表现得过于复杂或过于简单。🌈

2024-11-26 20:06:55 197

原创 番外篇 | CIB-SE-YOLOv8:针对施工现场的安全设备实时检测

本论文提出的CIB-SE-YOLOv8模型在YOLOv8n的基础上,通过引入SE注意力机制和用C2fCIB块替换某些C2f块构建而成。实验结果证明,本论文所提出的新算法对施工现场的安全设备实时检测具有明显的改进效果。🌈

2024-11-25 19:50:14 207

原创 卷积篇 | YOLOv8改进之引入基于小波变换的新型卷积WTConv | ECCV 2024

这篇文章介绍了一种新型卷积层WTConv,它利用小波变换有效地扩大了卷积神经网络的感受野而不显著增加参数量,从而提升了网络性能。WTConv层可以作为现有CNN架构的直接替代,并在图像分类、语义分割和物体检测等多个计算机视觉任务中展示了其有效性。🌈

2024-11-25 19:39:19 337

原创 卷积篇 | WTConv:小参数大感受野,基于小波变换的新型卷积 | ECCV 2024

文章介绍了一种名为WTConv的新型卷积层,它利用小波变换(WT)来增加卷积神经网络(CNNs)的感受野,而无需大幅增加可训练参数的数量。🌈

2024-11-25 19:26:37 482

原创 特征融合篇 | CARAFE:轻量级通用上采样算子,可提高目标检测性能

CARAFE算子能够根据像素之间的关系进行自适应的上采样,从而更好地保留图像的细节和语义信息。🌈

2024-11-18 20:19:41 406

原创 注意力机制篇 | YOLO11改进之引入高效多尺度注意力模块EMA | 即插即用,助力涨点

通过在不同尺度上捕捉输入数据的特征,让模型同时关注局部细节和全局结构,以提高对细节和上下文信息的理解,达到提升模型的表达能力、泛化性、鲁棒性和定位精度,优化资源使用效率的效果。🌈

2024-11-18 19:51:39 233

原创 番外篇 | 关于YOLO11算法的改进点总结

关于YOLO11算法的改进点总结。🌈

2024-11-12 23:06:34 900

原创 源码解析篇 | YOLO11:计算机视觉领域的新突破 !对比YOLOv8如何 ?

作为Ultralytics YOLO系列实时目标检测器的最新迭代,YOLO11凭借尖端的准确性、速度和效率,重新定义了性能极限,为目标检测、分割、分类、定向边界框检测以及姿态估计等多样计算机视觉任务树立了新标杆。🌈

2024-11-04 21:53:44 2072

原创 模型训练篇 | YOLO11来了!手把手教你如何用YOLO11训练自己的数据集(含算法介绍 + 网络结构 + 模型训练等)

​YOLO11是一个尖端的、最先进(SOTA)的模型,基于之前YOLO版本的成功,并引入了新功能和改进以进一步提升性能和灵活性。YOLO11被设计得快速、准确且易于使用,是进行广泛对象检测和跟踪、实例分割、图像分类和姿态估计任务的理想选择。🌈

2024-11-03 22:42:26 3076

原创 番外篇 | 超越SOTA !YOLOv8-ResCBAM集成注意力机制以提高检测性能 !

该论文介绍了一种基于YOLOv8模型的改进算法YOLOv8-ResCBAM,用于儿童腕部骨折检测。该算法通过在YOLOv8网络架构中集成了卷积块注意力模块和残差块来提升模型性能,探讨了不同输入图像尺寸对模型性能的影响,并提出了将YOLOv8-ResCBAM作为计算机辅助诊断工具,以协助外科医生分析X光图像,减少骨折检测中的误判可能性。🌈

2024-10-30 21:09:03 235

原创 番外篇 | 史上最全的关于CV的一些经典注意力机制代码汇总

在计算机视觉(CV)中,注意力机制是一种能够让模型关注和重视输入数据中的某些部分的方法。它通常用于图像识别和分类任务,以增强模型对输入数据的理解。🌈

2024-10-16 19:21:07 889 2

原创 检测头篇 | 手把手教你如何去更换YOLOv8的检测头为ASFF_Detect

自适应空间特征融合(ASFF)的主要原理旨在解决单次检测器中不同尺度特征的不一致性问题。具体来说,ASFF通过动态调整来自不同尺度特征金字塔层的特征贡献,确保每个检测对象的特征表示是一致且最优的。本文所做出的改进是将YOLOv8的检测头更换为ASFF_Detect。🌈

2024-10-15 16:19:25 1337 1

原创 番外篇 | 常用的激活函数汇总 | 20+种激活函数介绍及其公式、图像等

激活函数(Activation Function)是神经网络中的一种重要概念,用于控制神经网络中神经元的激活方式。激活函数通常被定义为神经元的输出与其输入之间的关系,并能够为神经网络提供非线性特性,这对于解决某些复杂问题(如分类和回归)非常重要。🌈

2024-10-13 21:01:13 924 4

原创 损失函数篇 | YOLOv8更换损失函数之SlideLoss | 解决简单样本和困难样本之间的不平衡问题

SlideLoss是一种新颖的损失函数,可以有效地解决YOLO算法在处理小目标和密集目标时的问题。本文所做出的改进是在YOLOv8算法中引入SlideLoss损失函数。🌈

2024-10-13 13:43:03 1359 6

原创 注意力机制篇 | 清华大学提出Focused Linear Attention取代Self-Attention成为ViT的新宠

Focused Linear Attention(聚焦线性注意力)是一种用于视觉Transformer模型的注意力机制,旨在提高效率和表现力,它解决了传统线性注意力方法的两个主要问题:聚焦能力和特征多样性。🌈

2024-10-13 12:04:17 482

原创 模型训练篇 | 关于yolov8算法训练评估指标详解

在采用YOLOv8算法训练完成后,需要对算法训练效果进行评价,主要包括指标有精确率(Precision)、召回率(Recall)、交并比(IoU)、平均精度(AP)和多个类别AP的平均值即mAP等等。本节课就给大家重点介绍下相关评价指标及其含义,希望大家学习之后能够有所收获!🌈

2024-10-13 09:59:33 701

原创 番外篇 | CAF-YOLO,融合卷积与Transformer优势,实现微小物体的高精度检测

主流的深度学习模型常常在通用视觉领域表现良好,然而在医学图像的病变识别和定位都缺乏必要的精确度,无法检测到微小细胞。对此本文介绍一种基于YOLOv8架构的CAF-YOLO方法,该方法通过在多个尺度上提取特征来提高多尺度信息汇聚,在BCCD和LUNA16数据集上表现出优异的性能!🌈

2024-10-09 17:14:12 292

原创 番外篇 | CRAS-YOLO:基于卫星图像的多类别船舶检测和分类

针对传统基于卫星图像的多类别船舶检测和分类检测效果不佳的情形,我们提出了一种新的多类船检测,称为CRAS-YOLO,它由卷积块注意力模块(CBAM)、感受野块(RFB)和基于YOLOv5s的自适应空间特征融合(ASFF)组成。🌈

2024-10-07 14:07:09 1009 2

原创 番外篇 | 应对遮挡挑战,北航提出新型模型YOLOv5-FFM表现优异

在本文中,作者提出了一种改进的轻量级YOLOv5-FFM模型来解决行人检测遮挡问题。实验结果显示,与原始的yolov5s模型相比,作者的方法的平均精确度(AP)显著提高,参数数量减少了27.9%,浮点运算(FLOPs)减少了19.0%。🌈

2024-09-28 23:55:43 220

原创 番外篇 | 复现AC-YOLOv5,进行自动化织物缺陷检测

我们提出了一种基于AC-YOLOv5的新型纺织缺陷检测方法。将空洞空间金字塔池化(ASPP)模块引入YOLOv5主干网络中,提出了squeeze-and-excitation(CSE)通道注意力模块,并将其引入到YOLOv5主干网络中。🌈

2024-09-28 22:30:09 584

原创 注意力机制篇 | YOLOv8改进之在C2f模块引入EffectiveSE注意力模块 | 基于SE注意力

EffectiveSE(Effective Squeeze-Excitation) 是一种改进的通道注意力模块,其目的是在保持模型性能的同时减少计算复杂性和信息丢失。它基于原始的 Squeeze-Excitation (SE) 模块,但通过一些关键的改进来提高效率。🌈

2024-09-25 23:49:29 345

原创 注意力机制篇 | YOLOv8改进之引入NAMAttention注意力机制 | 基于标准化的注意力模块

本文提出一种基于归一化的注意力模块(NAM),可以降低不太显著的特征的权重,这种方式在注意力模块上应用了稀疏的权重惩罚,这使得这些权重在计算上更加高效,同时能够保持同样的性能。我们在ResNet和MobileNet上和其他的注意力方式进行了对比,我们的方法可以达到更高的准确率。🌈

2024-08-15 18:37:50 466

原创 神经网络的数学原理

人工智能技术的发展与成功应用已经成为21世纪科技领域最大的新现象。然而,科学地理解人工智能原理已经超出了现有科学体系的范畴。显然,人工智能是人类科学技术发展的必然结果,人工智能科学也将是人类科学进步与发展必然实现的目标🌈

2024-08-14 22:46:57 847

原创 毕业/期刊论文发表必备:YOLOv5 / v7 / v8 /v10算法网络结构图【文末提供原型文件下载地址】

YOLOv5/v7/v8/v10算法网络结构图及原型文件下载地址。🌈

2024-07-21 22:13:45 686

原创 注意力机制篇 | YOLOv8改进之在C2f模块引入Global Context注意力模块 | 全局上下文注意力机制

GCNet的核心思想是在每个残差块之后添加一个全局上下文模块(即本文的Global Context注意力模块),该模块能够捕捉全局信息,并以此来改进局部特征的学习,从而提高模型的识别精度。🌈

2024-07-13 09:58:17 1572

原创 论文发表作图必备:训练结果对比,多结果绘在一个图片【Precision】【Recall】【mAP0.5】【mAP0.5-0.95】【loss】

本文所介绍的作图教程适用于所有YOLO系列版本算法,接下来就以YOLOv8算法为例进行说明。🌈

2024-07-11 22:14:55 1672 1

原创 干货:如何高效检索和阅读文献

高效检索和阅读文献是科研过程中非常重要的一环,它能够帮助我们快速找到所需的信息并进行深入的学习和理解。本文就说明一下如何高效检索和阅读文献。🌈

2024-07-11 20:52:55 1070 1

原创 文学式开发工具 Jupyter Notebook

为什么说Jupyter Notebook是文学式开发工具?因为Jupyter Notebook将代码、说明文本、数学方程式、数据可视化图表内容全部组合到一起并显示在一个共享的文档中,可以实现一边写代码一边记录的效果。🌈

2024-07-11 18:12:33 1081

原创 特征融合篇 | YOLOv10改进之在Neck网络中添加加权双向特征金字塔BiFPN

在计算机视觉任务中,特征金字塔网络(FPN)是一种常用的方法,它通过构建不同尺度的特征图来捕获不同尺度的目标。然而,传统的FPN存在一些缺点,如特征融合效率低、信息流通不充分等。BIFPN则通过引入双向的特征融合机制和加权的特征融合方法来克服这些问题。🌈

2024-07-10 21:43:49 2018 2

港口物流协同优化算法设计

港口物流协同优化目标定义 港口物流系统建模与数据采集 协同优化算法技术选型分析 协同优化算法模型设计与求解方法 港口物流协同作业场景仿真分析 算法优化效果评估与敏感性分析 协同优化算法在港口物流中的实施策略 港口物流协同优化算法应用案例研究

2025-01-15

产品经理Axure元件库+案例+效果

Axure RP是一款专业的原型设计工具,它允许用户创建交互式线框图、流程图和高保真度的界面原型。元件库是Axure的核心组成部分,它是预设的设计元素集合,包括按钮、输入框、图片等各种UI组件。 元件库的作用: 提高效率:设计师可以复用预先创建的元件,减少重复工作,提高工作效率。 统一风格:元件库中的元素通常有统一的设计规范,有助于保持整个原型的一致性。 灵活性:通过元件库,你可以随时修改某个元件的行为或样式,而所有使用该元件的地方都会自动更新。 案例: 例如,如果你正在设计一个电商网站的原型,可能会有一个元件库包含各种商品卡片、购物车图标、搜索框等基本元素。当你需要在多个页面上展示相似的商品列表时,只需将这些商品卡片从元件库拖放到页面中即可。 效果: 在Axure中,通过组合元件和交互设计,你可以模拟出丰富的动态效果,如点击按钮后弹出下拉菜单、滚动事件触发内容切换等。同时,支持导出HTML/CSS/JS,方便与前端开发者协作并查看实际效果。

2024-12-17

产品经理大数据可视化100款看板原型设计.rp

【产品经理】大数据可视化100款看板原型设计文件,RP格式,适合产品经理。 内容包括:智慧教育、智慧旅游、智慧政务、智慧服务、智慧医疗、智慧预警、智慧消防、智慧监控、数据分析、大屏图表、移动端图表等。

2024-12-10

YOLOv5/v7/v8/v10算法网络结构图-原型文件

文档介绍:YOLOv5/v7/v8/v10算法网络结构图_原型文件 适用人群:在校大学生、人工智能学习爱好者

2024-07-21

yolov10完整源码+权重文件

资源描述:YOLOv10是清华大学研究人员所研发的一种新的实时目标检测方法,解决了YOLO以前版本在后处理和模型架构方面的不足。通过消除非最大抑制(NMS)和优化各种模型组件,YOLOv10在显著降低计算开销的同时实现了最先进的性能。并用大量实验证明,YOLOv10在多个模型尺度上实现了卓越的精度-延迟权衡。 适用人群:在校大学生、人工智能爱好者等。

2024-07-03

《番外篇 - YOLOv8算法解析和实战应用:车辆检测 + 车辆追踪 + 行驶速度计算》

资源内容:番外篇 | YOLOv8算法解析和实战应用:车辆检测 + 车辆追踪 + 行驶速度计算 适用人群:在校学生、人工智能技术爱好者等。

2024-06-21

《番外篇 - 利用YOLOv5实现视频划定区域目标统计计数》完整代码

内容专栏:《YOLOv5:从入门到实战》 内容介绍:《番外篇 | 利用YOLOv5实现视频划定区域目标统计计数》完整代码 适用人群:初入行的人工智能学习者、YOLOv5算法初入门的学生等。

2024-04-05

《主干网络篇 - YOLOv8更换主干网络之GhostNet》完整源码

内容专栏:《YOLOv8:从入门到实战》 内容介绍:《主干网络篇 | YOLOv8更换主干网络之GhostNet》完整源码 适用人群:初入行的人工智能学习者、YOLOv8算法初入门的学生等。

2024-03-23

《主干网络篇 - YOLOv8更换主干网络之ShuffleNetV2(包括完整代码+添加步骤+网络结构图)》完整源码

内容专栏:《YOLOv8:从入门到实战》 内容介绍:《主干网络篇 | YOLOv8更换主干网络之ShuffleNetV2(包括完整代码+添加步骤+网络结构图)》完整源码 适用人群:初入行的人工智能学习者、YOLOv8算法初入门的学生等。

2024-03-16

明火烟雾算法检测数据集

内容概要:明火烟雾算法检测数据集,合计700张,可作为训练模型时使用,笔者文章中的算法训练及改进皆可使用,全部都是作者手动标注。 适用人群:初入门人工智能-计算机视觉的人群

2024-03-05

yolov9完整源码+权重文件

资源内容:基于YOLOv9训练自己数据集源码 适用人群:人工智能行业初入门人员、YOLO算法爱好者

2024-02-27

《番外篇 - YOLOv5+DeepSort实现行人目标跟踪检测》完整代码

DeepSort是一种用于目标跟踪的深度学习算法。它结合了目标检测和目标跟踪的技术,能够在视频中准确地跟踪多个目标,并为每个目标分配一个唯一的ID。DeepSort的核心思想是将目标检测和目标跟踪两个任务进行联合训练,以提高跟踪的准确性和稳定性。本节课就手把手教大家如何采用YOLOv5+DeepSort相结合的方式实现行人目标跟踪检测。

2024-02-24

yolov8完整源码+权重文件

1、资源内容:基于YOLOv8训练自己数据集源码 2、适用人群:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业或毕业设计,作为“参考资料”使用。

2024-02-03

《YOLOv5改进 - 添加CA注意力机制 + 增加预测层 + 更换损失函数之GIoU》完整代码

《YOLOv5改进 - 添加CA注意力机制 + 增加预测层 + 更换损失函数之GIoU》完整代码

2024-02-02

解读安全生产法(最新)

《安全生产法》最新解读,适用于工业行业安全生产领域相关人士阅读。

2024-01-27

yolov7-v0.1(完整源码+环境配置+权重文件)-改进版

1、资源内容:基于YOLOv7训练自己数据集源码 2、适用人群:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业或毕业设计,作为“参考资料”使用。

2024-01-14

yolov7-v0.1(完整源码+环境配置+权重文件)

1、资源内容:基于YOLOv7训练自己数据集源码 2、适用人群:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业或毕业设计,作为“参考资料”使用。

2024-01-08

OpenCV基础知识(10)- 人脸识别项目完整代码

OpenCV基础知识(10)— 人脸识别(人脸跟踪、眼睛跟踪、行人跟踪、车牌跟踪和人脸识别)相关资源及完整代码 适合:OpenCV初学者

2023-09-05

大数据可视化100款看板原型设计.rp

大数据可视化100款看板原型设计.rp

2023-09-04

YOLOv5项目实战(1)- 欢度中秋节!手把手教你制作月饼检测器项目代码

YOLOv5项目实战(1)- 欢度中秋节!手把手教你制作月饼检测器项目代码

2023-09-04

YOLOv5:从入门到实战,月饼检测数据集

YOLOv5项目实战(1)— 欢度中秋节!手把手教你制作月饼检测器数据集

2023-09-04

智能安防管理系统产品标准方案.pptx

智能安防管理系统产品标准方案.pptx

2023-08-25

基于全球眼智慧安防系统解决方案V1.0.doc

基于全球眼智慧安防系统解决方案V1.0.doc

2023-08-25

高校校园综合安防解决方案

高校校园综合安防解决方案

2023-08-25

【精品】综合安防集成系统解决方案

【精品】综合安防集成系统解决方案

2023-08-24

智慧城市-智慧安防解决方案报告

智慧城市-智慧安防解决方案报告

2023-08-19

YOLOv5模型权重+网络结构图

YOLOv5模型权重+网络结构图,适合初入门的YOLOv5算法爱好者、学生等。

2023-08-18

非极大值抑制原理解析及实现流程

非极大值抑制(Non-Maximum Suppression,NMS),顾名思义就是抑制不是极大值的元素,可以理解为局部最大搜索。这个局部代表的是一个邻域,邻域有两个参数可变,一是邻域的维数,二是邻域的大小。这里不讨论通用的NMS算法(参考论文《Efficient Non-Maximum Suppression》对1维和2维数据的NMS实现),而是用于目标检测中提取分数最高的窗口的。NMS在计算机视觉领域有着非常重要的应用,如视频目标跟踪、数据挖掘、3D重建、目标识别以及纹理分析等。 适合人群:目标检测算法爱好者、学生等。

2023-08-18

YOLO算法发展历程及改进

目标检测是人工智能计算机视觉的一种,它主要解决从图像中获取需要的物体类型以及位置的问题,输入一幅图像或者一帧视频,要输出图像中要求物体的类别和位置,其中的位置通常用一个框标记出来。在研究目标检测问题时,通常只考虑感兴趣的物体,比如人脸检测检测人脸,交通检测检测车辆等。 目标检测有两种实现,一种是one-stage,另一种是two-stage,它们的区别如名称所体现的,two-stage有一个region proposal过程,可以理解为网络会先生成目标候选区域,然后把所有的区域放进分类器分类,而one-stage会先把图片分割成一个个的image patch,然后每个image patch都有M个anchor box,把所有的anchor送进分类器输出分类和检测位置。很明显可以看出,后一种方法的速度会比较快。YOLO算法是一种典型的one-stage方法,它是You Only Look Once 的缩写,意思是神经网络只需要看一次图片,就能输出结果。 适用人群:YOLO算法爱好者、学生等

2023-08-18

安全帽佩戴检测数据集(使用YOLOv5进行模型训练)

内容:打开数据集文件,我们会看到数据集文件包括images和labels两个文件夹,其中,images放的是数据集图片,包括train和val两个文件夹,labels放的是经过labelimg标注所生成的标签,也包括train和val两个文件夹。 适用人群:适合YOLOv5学习入门者、学生等,进行安全帽佩戴的检测。 相关课程:https://abc616.blog.csdn.net/article/details/131988293,YOLOv5入门实践(4)— 手把手教你使用YOLOv5训练自己的安全帽佩戴检测模型

2023-08-14

智能监控系统软件设计.pptx

智能监控系统是采用图像处理、模式识别和计算机视觉技术,通过在监控系统中增加智能视频分析模块,借助计算机强大的数据处理能力过滤掉视频画面无用的或干扰信息、自动识别不同物体,分析抽取视频源中关键有用信息,快速准确的定位事故现场,判断监控画面中的异常情况,并以最快和最佳的方式发出警报或触发其它动作,从而有效进行事前预警,事中处理,事后及时取证的全自动、全天候、实时监控的智能系统。

2023-07-30

传感器原理及应用(教材版)

传感器原理及应用(教材版)

2023-07-30

铁路智能感知技术研究及应用 -埃福瑞

铁路智能感知技术研究及应用 -埃福瑞

2023-07-30

元宇宙详细介绍.pptx

元宇宙(Metaverse)是利用科技手段进行链接与创造的,与现实世界映射与交互的虚拟世界,具备新型社会体系的数字生活空间。 元宇宙本质上是对现实世界的虚拟化、数字化过程,需要对内容生产、经济系统、用户体验以及实体世界内容等进行大量改造。但元宇宙的发展是循序渐进的,是在共享的基础设施、标准及协议的支撑下,由众多工具、平台不断融合、进化而最终成形。 它基于扩展现实技术提供沉浸式体验,基于数字孪生技术生成现实世界的镜像,基于区块链技术搭建经济体系,将虚拟世界与现实世界在经济系统、社交系统、身份系统上密切融合,并且允许每个用户进行内容生产和世界编辑。 元宇宙一词诞生于1992年的科幻小说《雪崩》,小说描绘了一个庞大的虚拟现实世界,在这里,人们用数字化身来控制,并相互竞争以提高自己的地位,到现在看来,描述的还是超前的未来世界。 关于"元宇宙",比较认可的思想源头是美国数学家和计算机专家弗诺·文奇教授,在其1981年出版的小说《真名实姓》中,创造性地构思了一个通过脑机接口进入并获得感官体验的虚拟世界。

2023-03-10

产品经理必须学会的流程图总结

产品经理在日常工作中经常会用到流程图,流程图可以帮助你梳理思路和工作流程,对于产品经理来说也是一个必备技能。在日常工作中,一般在需求确定之后,会通过画流程图来进一步梳理操作流程,探讨在功能或者结构上是否有问题;并且可以通过流程图一目了然的看到流程是否有错误或者遗漏,为原型图绘制和程序进行开发提供方便,更好的去完成产品的输出。在实际工作中,有的时候某些项目可能会由于时间的关系,领导在给出文字需求以后就会让先画原型图;就算是在画完原型图之后,自己再梳理流程图的时候,可能也会发现有不明确或者没考虑到的地方,这时候就可以及时完善。所以,要想成为优秀的产品经理,就必须要学会流程图的画法。

2023-03-07

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除