🌟YOLOv8:从入门到实战 | 目录 | 使用教程🌟
本专栏涵盖了丰富的YOLOv8基础知识+源码解析+入门实践+算法改进+项目实战系列教程,专为学习YOLOv8的同学而设计,堪称全网最详细的教程!该专栏针对YOLOv8内容的学习提供了详细的手把手教程,欢迎大家订阅并一并探索!
《YOLOv8:从入门到实战》专栏地址:点击跳转
源码解析篇
2.源码解析篇 | 万字长文带你深度解析yolov8.yaml配置文件
模型训练篇
1.模型训练篇 | 如何用yolov8训练自己的数据集(以安全帽佩戴检测举例)
主干网络篇
1.主干网络篇 | YOLOv8更换主干网络之ShuffleNetV2
2.主干网络篇 | YOLOv8更换主干网络之MobileNetV3
3.主干网络篇 | YOLOv8更换主干网络之GhostNet
4.主干网络篇 | YOLOv8更换主干网络之PP-LCNet
5.主干网络篇 | YOLOv8更换主干网络之EfficientNet
6.主干网络篇 | YOLOv8更换主干网络之SwinTransformer
7.主干网络篇 | YOLOv8改进之用C2f_Faster替换C2f
8.主干网络篇 | YOLOv8改进之在主干网络中引入密集连接卷积网络DenseNet
9.主干网络篇 | 利用RT-DETR模型主干HGNet去替换YOLOv8的主干
10.主干网络篇 | YOLOv8改进之用RCS-OSA替换C2f(来源于RCS-YOLO)
11.主干网络篇 | YOLOv8更换主干网络之VanillaNet | 华为方舟实验室提出全新轻量级骨干架构
12.主干网络篇 | YOLOv8更换主干网络之ConvNext | 全新的纯卷积模型
13.主干网络篇 | YOLOv8更换主干网络之MobileViT | 轻量、通用和适用移动设备
14.主干网络篇 | YOLOv8更换主干网络之FasterNet | CVPR2023
15.主干网络篇 | YOLOv8改进之引入低照度图像增强网络Retinexformer | 解决低照度目标检测问题
16.主干网络篇 | YOLOv8遇见SENetV2!Squeeze-Excitation模块 + Dense Layer成就更好的Backbone!
17.主干网络篇 | YOLOv8更换主干网络之MobileNeXt | 新一代移动端模型MobileNeXt来了!
18.主干网络篇 | YOLOv8改进之引入YOLOv10的主干网络 | 全网最新改进
特征融合篇
1.特征融合篇 | YOLOv8改进之更换上采样方式CARAFE | 轻量级通用上采样算子
2.特征融合篇 | YOLOv8改进之更换上采样方式DySample | 超轻量级动态上采样算子
3.特征融合篇 | YOLOv8改进之将主干网络SPPF更换为SimSPPF / SPP-CSPC / SPPF-CSPC
4.特征融合篇 | YOLOv8改进之引入中心化特征金字塔EVC模块
5.特征融合篇 | YOLOv8改进之将Neck网络更换为AFPN
6.特征融合篇 | YOLOv8改进之将Neck网络更换为BiFPN
7.特征融合篇 | YOLOv8改进之将Neck网络更换为GFPN(附2种改进方法)
8.特征融合篇 | 利用RT-DETR的AIFI去替换YOLOv8中的SPPF(附2种改进方法)
9.特征融合篇 | YOLOv8改进之将Neck网络更换为多级特征融合金字塔HS-FPN | 助力小目标检测
10.特征融合篇 | YOLOv8改进之利用ASF-YOLO重构特征融合层 | 助力小目标检测
11.特征融合篇 | YOLOv8改进之利用多层次特征融合模块SDI重构特征融合层 | 助力小目标检测
12.特征融合篇 | YOLOv8改进之利用全局平均池化层和全局最大池化层优化SPPF
13.特征融合篇 | YOLOv8改进之引入多尺度特征融合iAFF,提升小目标检测能力
14.特征融合篇 | YOLOv8改进之引入轻量级跨尺度特征融合模块CCFM | 源自RT-DETR
15.特征融合篇 | YOLOv8改进之利用新的空间金字塔池化FocalModulation取代SPPF
小目标检测篇
1.小目标检测篇 | YOLOv8改进之增加小目标检测层(四头检测机制)
2.小目标检测篇 | YOLOv8改进之增加小目标检测层(针对Neck网络为AFPN)
3.小目标检测篇 | YOLOv8改进之添加BiFormer注意力机制
4.小目标检测篇 | YOLOv8改进之GSConv + Slim Neck提升小目标检测效果
5.小目标检测篇 | YOLOv8改进之更换Neck网络为BiFPN + 添加小目标检测层
6.小目标检测篇 | 针对遥感图像的小目标检测 | 解决低分辨率、低对比度和模糊等问题
7.小目标检测篇 | 基于改进YOLOv8网络结构的小目标检测方法
注意力机制篇
2.注意力机制篇 | YOLOv8改进之添加DAT注意力机制
3.注意力机制篇 | YOLOv8改进之添加CBAM注意力机制
4.注意力机制篇 | YOLOv8改进之添加多种注意力机制(附:多种注意力机制核心代码)
5.注意力机制篇 | YOLOv8改进之在C2f模块添加EMA注意力机制(附2种改进方法)
6.注意力机制篇 | YOLOv8改进之在C2f模块添加级联群体注意力机制CGAttention | CVPR 2023
7.注意力机制篇 | YOLOv8改进之添加LSKAttention大核卷积注意力机制 | 即插即用,实现有效涨点
8.注意力机制篇 | YOLOv8改进之添加多尺度全局注意力机制DilateFormer(MSDA)| 即插即用
9.注意力机制篇 | YOLOv8改进之清华开源ACmix:自注意力和CNN的融合 | 性能速度全面提升
10.注意力机制篇 | YOLOv8改进之在C2f模块添加ParNetAttention注意力机制
11.注意力机制篇 | YOLOv8改进之在C2f模块引入反向残差注意力模块iRMB | CVPR 2023
12.注意力机制篇 | YOLOv8改进之添加RFAConv注意力机制 | 创新空间注意力和标准卷积操作
13.注意力机制篇 | YOLOv8改进之引入用于目标检测的混合局部通道注意力MLCA
14.注意力机制篇 | MSFE:即插即用的多尺度滑窗注意力(附源码实现)
15.注意力机制篇 | YOLOv8改进之引入STA(Super Token Attention)超级令牌注意力机制 | CVPR2023
16.注意力机制篇 | YOLOv8改进之在C2f模块引入全局多头自注意力MHSA
17.注意力机制篇 | YOLOv8改进之在C2f模块引入SpatialGroupEnhance注意力模块
18.注意力机制篇 | YOLOv8改进之在C2f模块引入Triplet注意力模块 | 三重注意力机制
19.注意力机制篇 | YOLOv8改进之在C2f模块引入Global Context注意力模块 | 全局上下文注意力机制
20.注意力机制篇 | YOLOv8改进之引入NAMAttention注意力机制 | 基于标准化的注意力模块
21.注意力机制篇 | YOLOv8改进之在C2f模块引入EffectiveSE注意力模块 | 基于SE注意力
22.注意力机制篇 | 清华大学提出Focused Linear Attention取代Self-Attention成为ViT的新宠
损失函数篇
1.损失函数篇 | YOLOv8更换损失函数之CIoU / DIoU / EIoU / GIoU / SIoU / WIoU
2.损失函数篇 | YOLOv8更换损失函数之MPDIoU(23年7月首发论文)
3.损失函数篇 | YOLOv8更换损失函数之Powerful-IoU(2024年最新IoU)
4.损失函数篇 | YOLOv8更换损失函数之Inner-IoU | 通过辅助边界框计算IoU损失
5.损失函数篇 | YOLOv8更换损失函数之SlideLoss | 解决简单样本和困难样本之间的不平衡问题
非极大值抑制篇
1.非极大值抑制篇 | YOLOv8更换NMS之DIoU-NMS / CIoU-NMS / EIoU-NMS / GIoU-NMS / GIoU-NMS / Soft-NMS
持续更新中......
检测头篇
1.检测头篇 | 利用RT-DETR模型的检测头去替换YOLOv8中的检测头
2.检测头篇 | YOLOv8改进之添加小目标检测头 / 添加大目标检测头 / 减少检测头
3.检测头篇 | 手把手教你如何去更换YOLOv8的检测头为ASFF_Detect
持续更新中......
卷积篇
1.卷积篇 | YOLOv8改进之C2f模块融合SCConv | 即插即用的空间和通道维度重构卷积
2.卷积篇 | YOLOv8改进之引入动态蛇形卷积DSConv(附3种改进方法)
3.卷积篇 | YOLOv8改进之主干网络中引入可变形卷积DConv
4.卷积篇 | YOLOv8改进之主干网络C2f模块融合SAConv
5.卷积篇 | 引入可改变核卷积AKConv:具有任意采样形状和任意数目参数的卷积核
6.卷积篇 | YOLOv8改进之引入用于低分辨率图像和小物体检测的CNN模块SPD-Conv
7.卷积篇 | YOLOv8改进之引入全维度动态卷积ODConv | 即插即用
8.卷积篇 | YOLOv8改进之引入双卷积DualConv | 轻量化卷积设计
9.卷积篇 | YOLOv8改进之引入重新参数化再聚焦卷积RefConv | 即插即用
10.卷积篇 | YOLOv8改进之引入基于小波变换的新型卷积WTConv | ECCV 2024
番外篇
1.番外篇 | 手把手教你如何用YOLOv8实现行人/车辆等过线统计
2.番外篇 | YOLOv8改进之引入RepVGG重参数化模块 | 即插即用,实现有效涨点
3.番外篇 | YOLOv8改进之引入YOLOv9的ADown模块 | 替换YOLOv8卷积
4.番外篇 | YOLOv8改进之在C2f中引入即插即用RepViTBlock模块 | CVPR2024清华RepViT
5.番外篇 | YOLOv8改进之在C2f中引入MSBlock模块(来源于YOLO-MS) | 轻量化网络结构
6.番外篇 | 手把手教你如何在YOLOv8中引入谷歌Lion优化器
7.番外篇 | YOLOv8改进之利用SCINet解决黑夜目标检测问题 | 低照度图像增强网络
8.番外篇 | 手把手教你利用YOLOv8进行热力图可视化 | 针对视频
9.番外篇 | YOLOv8改进之引入YOLOv9的SPPELAN模块 | 替换主干网络SPPF
10.番外篇 | YOLOv8结合切片辅助超推理库SAHI优化小目标识别 | 让小目标无处遁形
11.番外篇 | YOLOv8改进之更换主干网络MobileNetv3 + 添加CA注意力机制
12.番外篇 | YOLOv8改进之在C2f中引入多元分支模块DiverseBranchBlock | 涨点必备
13.番外篇 | YOLOv8改进之引入YOLOv9的RepNCSPELAN4模块 | 替换YOLOv8的C2f
14.番外篇 | YOLOv8改进之结合Drone-YOLO:一种有效的无人机图像目标检测
15.番外篇 | YOLOv8改进之在C2f中引入FasterBlock模块(来源于FasterNet) | CVPR2023
16.番外篇 | YOLOv8算法解析和实战应用:车辆检测 + 车辆追踪 + 行驶速度计算
17.番外篇 | YOLOv8改进之利用轻量化卷积PConv引入全新的结构CSPPC来替换Neck网络中的C2f | 模型轻量化
18.番外篇 | 斯坦福提出即插即用二阶优化器Sophia :相比Adam实现2倍加速,显著节省大语言模型训练成本
19.番外篇 | YOLOv8改进之即插即用全维度动态卷积ODConv + 更换Neck网络为GFPN
20.番外篇 | CAF-YOLO,融合卷积与Transformer优势,实现微小物体的高精度检测
21.番外篇 | 常用的激活函数汇总 | 20+种激活函数介绍及其公式、图像等
22.番外篇 | 史上最全的关于CV的一些经典注意力机制代码汇总
23.番外篇 | 超越SOTA !YOLOv8-ResCBAM集成注意力机制以提高检测性能 !
24.番外篇 | CIB-SE-YOLOv8:针对施工现场的安全设备实时检测
25.番外篇 | 关于YOLOv8网络结构中添加注意力机制的常见方法 | Neck网络
26.番外篇 | YOLO-ELA:高效的局部注意力建模,用于高性能实时缺陷检测 !
27.番外篇 | YOLOv8-GC:全局上下文建模用于儿童手腕骨折检测
28.番外篇 | FCE-YOLOv8:基于特征上下文激励模块的儿童手腕骨折X线影像检测
29.番外篇 | Hyper-YOLO:超图计算与YOLO架构相结合成为目标检测新的SOTA !
30.番外篇 | BGF-YOLO:引入双层路由注意力、广义特征金字塔网络和第四检测头,提高YOLOv8检测性能
31.番外篇 | SEAM-YOLO:引入SEAM系列注意力机制,提升遮挡小目标的检测性能
持续更新中......