《YOLOv8:从入门到实战》专栏介绍 & 专栏目录

本专栏全面覆盖YOLOv8的源码解析、模型训练、主干网络改进、特征融合策略、小目标检测、注意力机制、损失函数、非极大值抑制等内容,提供丰富的实战教程,适合学习YOLOv8的同学。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

🌟YOLOv8:从入门到实战 | 目录 | 使用教程🌟 

本专栏涵盖了丰富的YOLOv8基础知识+源码解析+入门实践+算法改进+项目实战系列教程,专为学习YOLOv8的同学而设计,堪称全网最详细的教程!该专栏针对YOLOv8内容的学习提供了详细的手把手教程,欢迎大家订阅并一并探索! 

《YOLOv8:从入门到实战》专栏地址:点击跳转 


源码解析篇

1.源码解析篇 | YOLOv8官方源码项目目录结构解析

2.源码解析篇 | 万字长文带你深度解析yolov8.yaml配置文件


模型训练篇

1.模型训练篇 | 如何用yolov8训练自己的数据集(以安全帽佩戴检测举例)

2.模型训练篇 | 关于yolov8算法训练评估指标详解

3.模型训练篇 | 一文彻底搞懂深度学习:过拟合和欠拟合


主干网络篇 

1.主干网络篇 | YOLOv8更换主干网络之ShuffleNetV2

2.主干网络篇 | YOLOv8更换主干网络之MobileNetV3

3.主干网络篇 | YOLOv8更换主干网络之GhostNet

4.主干网络篇 | YOLOv8更换主干网络之PP-LCNet

5.主干网络篇 | YOLOv8更换主干网络之EfficientNet

6.主干网络篇 | YOLOv8更换主干网络之SwinTransformer

7.主干网络篇 | YOLOv8改进之用C2f_Faster替换C2f

8.主干网络篇 | YOLOv8改进之在主干网络中引入密集连接卷积网络DenseNet

9.主干网络篇 | 利用RT-DETR模型主干HGNet去替换YOLOv8的主干

10.主干网络篇 | YOLOv8改进之用RCS-OSA替换C2f(来源于RCS-YOLO)

11.主干网络篇 | YOLOv8更换主干网络之VanillaNet | 华为方舟实验室提出全新轻量级骨干架构

12.主干网络篇 | YOLOv8更换主干网络之ConvNext | 全新的纯卷积模型

13.主干网络篇 | YOLOv8更换主干网络之MobileViT | 轻量、通用和适用移动设备

14.主干网络篇 | YOLOv8更换主干网络之FasterNet | CVPR2023

15.主干网络篇 | YOLOv8改进之引入低照度图像增强网络Retinexformer | 解决低照度目标检测问题

16.主干网络篇 | YOLOv8遇见SENetV2!Squeeze-Excitation模块 + Dense Layer成就更好的Backbone!

17.主干网络篇 | YOLOv8更换主干网络之MobileNeXt | 新一代移动端模型MobileNeXt来了!

18.主干网络篇 | YOLOv8改进之引入YOLOv10的主干网络 | 全网最新改进


特征融合篇

1.特征融合篇 | YOLOv8改进之更换上采样方式CARAFE | 轻量级通用上采样算子

2.特征融合篇 | YOLOv8改进之更换上采样方式DySample | 超轻量级动态上采样算子

3.特征融合篇 | YOLOv8改进之将主干网络SPPF更换为SimSPPF / SPP-CSPC / SPPF-CSPC

4.特征融合篇 | YOLOv8改进之引入中心化特征金字塔EVC模块

5.特征融合篇 | YOLOv8改进之将Neck网络更换为AFPN

6.特征融合篇 | YOLOv8改进之将Neck网络更换为BiFPN

7.特征融合篇 | YOLOv8改进之将Neck网络更换为GFPN(附2种改进方法)

8.特征融合篇 | 利用RT-DETR的AIFI去替换YOLOv8中的SPPF(附2种改进方法)

9.特征融合篇 | YOLOv8改进之将Neck网络更换为多级特征融合金字塔HS-FPN | 助力小目标检测

10.特征融合篇 | YOLOv8改进之利用ASF-YOLO重构特征融合层 | 助力小目标检测

11.特征融合篇 | YOLOv8改进之利用多层次特征融合模块SDI重构特征融合层 | 助力小目标检测

12.特征融合篇 | YOLOv8改进之利用全局平均池化层和全局最大池化层优化SPPF

13.特征融合篇 | YOLOv8改进之引入多尺度特征融合iAFF,提升小目标检测能力

14.特征融合篇 | YOLOv8改进之引入轻量级跨尺度特征融合模块CCFM | 源自RT-DETR

15.特征融合篇 | YOLOv8改进之利用新的空间金字塔池化FocalModulation取代SPPF


小目标检测篇

1.小目标检测篇 | YOLOv8改进之增加小目标检测层(四头检测机制)

2.小目标检测篇 | YOLOv8改进之增加小目标检测层(针对Neck网络为AFPN)

3.小目标检测篇 | YOLOv8改进之添加BiFormer注意力机制

4.小目标检测篇 | YOLOv8改进之GSConv + Slim Neck提升小目标检测效果

5.小目标检测篇 | YOLOv8改进之更换Neck网络为BiFPN + 添加小目标检测层

6.小目标检测篇 | 针对遥感图像的小目标检测 | 解决低分辨率、低对比度和模糊等问题

7.小目标检测篇 | 基于改进YOLOv8网络结构的小目标检测方法


注意力机制篇

1.注意力机制篇 | YOLOv8改进之添加CA注意力机制

2.注意力机制篇 | YOLOv8改进之添加DAT注意力机制

3.注意力机制篇 | YOLOv8改进之添加CBAM注意力机制

4.注意力机制篇 | YOLOv8改进之添加多种注意力机制(附:多种注意力机制核心代码)

5.注意力机制篇 | YOLOv8改进之在C2f模块添加EMA注意力机制(附2种改进方法)

6.注意力机制篇 | YOLOv8改进之在C2f模块添加级联群体注意力机制CGAttention | CVPR 2023

7.注意力机制篇 | YOLOv8改进之添加LSKAttention大核卷积注意力机制 | 即插即用,实现有效涨点

8.注意力机制篇 | YOLOv8改进之添加多尺度全局注意力机制DilateFormer(MSDA)| 即插即用

9.注意力机制篇 | YOLOv8改进之清华开源ACmix:自注意力和CNN的融合 | 性能速度全面提升

10.注意力机制篇 | YOLOv8改进之在C2f模块添加ParNetAttention注意力机制

11.注意力机制篇 | YOLOv8改进之在C2f模块引入反向残差注意力模块iRMB | CVPR 2023

12.注意力机制篇 | YOLOv8改进之添加RFAConv注意力机制 | 创新空间注意力和标准卷积操作

13.注意力机制篇 | YOLOv8改进之引入用于目标检测的混合局部通道注意力MLCA

14.注意力机制篇 | MSFE:即插即用的多尺度滑窗注意力(附源码实现)

15.注意力机制篇 | YOLOv8改进之引入STA(Super Token Attention)超级令牌注意力机制 | CVPR2023

16.注意力机制篇 | YOLOv8改进之在C2f模块引入全局多头自注意力MHSA

17.注意力机制篇 | YOLOv8改进之在C2f模块引入SpatialGroupEnhance注意力模块

18.注意力机制篇 | YOLOv8改进之在C2f模块引入Triplet注意力模块 | 三重注意力机制

19.注意力机制篇 | YOLOv8改进之在C2f模块引入Global Context注意力模块 | 全局上下文注意力机制

20.注意力机制篇 | YOLOv8改进之引入NAMAttention注意力机制 | 基于标准化的注意力模块

21.注意力机制篇 | YOLOv8改进之在C2f模块引入EffectiveSE注意力模块 | 基于SE注意力

22.注意力机制篇 | 清华大学提出Focused Linear Attention取代Self-Attention成为ViT的新宠


损失函数篇

1.损失函数篇 | YOLOv8更换损失函数之CIoU / DIoU / EIoU / GIoU / SIoU / WIoU

2.损失函数篇 | YOLOv8更换损失函数之MPDIoU(23年7月首发论文)

3.损失函数篇 | YOLOv8更换损失函数之Powerful-IoU(2024年最新IoU)

4.损失函数篇 | YOLOv8更换损失函数之Inner-IoU | 通过辅助边界框计算IoU损失

5.损失函数篇 | YOLOv8更换损失函数之SlideLoss | 解决简单样本和困难样本之间的不平衡问题


非极大值抑制篇

1.非极大值抑制篇 | YOLOv8更换NMS之DIoU-NMS / CIoU-NMS / EIoU-NMS / GIoU-NMS / GIoU-NMS / Soft-NMS

持续更新中......


检测头篇

1.检测头篇 | 利用RT-DETR模型的检测头去替换YOLOv8中的检测头

2.检测头篇 | YOLOv8改进之添加小目标检测头 / 添加大目标检测头 / 减少检测头

3.检测头篇 | 手把手教你如何去更换YOLOv8的检测头为ASFF_Detect

持续更新中......


卷积篇

1.卷积篇 | YOLOv8改进之C2f模块融合SCConv | 即插即用的空间和通道维度重构卷积

2.卷积篇 | YOLOv8改进之引入动态蛇形卷积DSConv(附3种改进方法)

3.卷积篇 | YOLOv8改进之主干网络中引入可变形卷积DConv

4.卷积篇 | YOLOv8改进之主干网络C2f模块融合SAConv

5.卷积篇 | 引入可改变核卷积AKConv:具有任意采样形状和任意数目参数的卷积核

6.卷积篇 | YOLOv8改进之引入用于低分辨率图像和小物体检测的CNN模块SPD-Conv

7.卷积篇 | YOLOv8改进之引入全维度动态卷积ODConv | 即插即用

8.卷积篇 | YOLOv8改进之引入双卷积DualConv | 轻量化卷积设计

9.卷积篇 | YOLOv8改进之引入重新参数化再聚焦卷积RefConv | 即插即用

10.卷积篇 | YOLOv8改进之引入基于小波变换的新型卷积WTConv | ECCV 2024


番外篇

1.番外篇 | 手把手教你如何用YOLOv8实现行人/车辆等过线统计

2.番外篇 | YOLOv8改进之引入RepVGG重参数化模块 | 即插即用,实现有效涨点

3.番外篇 | YOLOv8改进之引入YOLOv9的ADown模块 | 替换YOLOv8卷积

4.番外篇 | YOLOv8改进之在C2f中引入即插即用RepViTBlock模块 | CVPR2024清华RepViT

5.番外篇 | YOLOv8改进之在C2f中引入MSBlock模块(来源于YOLO-MS) | 轻量化网络结构

6.番外篇 | 手把手教你如何在YOLOv8中引入谷歌Lion优化器

7.番外篇 | YOLOv8改进之利用SCINet解决黑夜目标检测问题 | 低照度图像增强网络

8.番外篇 | 手把手教你利用YOLOv8进行热力图可视化 | 针对视频

9.番外篇 | YOLOv8改进之引入YOLOv9的SPPELAN模块 | 替换主干网络SPPF

10.番外篇 | YOLOv8结合切片辅助超推理库SAHI优化小目标识别 | 让小目标无处遁形

11.番外篇 | YOLOv8改进之更换主干网络MobileNetv3 + 添加CA注意力机制

12.番外篇 | YOLOv8改进之在C2f中引入多元分支模块DiverseBranchBlock | 涨点必备

13.番外篇 | YOLOv8改进之引入YOLOv9的RepNCSPELAN4模块 | 替换YOLOv8的C2f

14.番外篇 | YOLOv8改进之结合Drone-YOLO:一种有效的无人机图像目标检测

15.番外篇 | YOLOv8改进之在C2f中引入FasterBlock模块(来源于FasterNet) | CVPR2023

16.番外篇 | YOLOv8算法解析和实战应用:车辆检测 + 车辆追踪 + 行驶速度计算

17.番外篇 | YOLOv8改进之利用轻量化卷积PConv引入全新的结构CSPPC来替换Neck网络中的C2f | 模型轻量化

18.番外篇 | 斯坦福提出即插即用二阶优化器Sophia :相比Adam实现2倍加速,显著节省大语言模型训练成本

19.番外篇 | YOLOv8改进之即插即用全维度动态卷积ODConv + 更换Neck网络为GFPN

20.番外篇 | CAF-YOLO,融合卷积与Transformer优势,实现微小物体的高精度检测

21.番外篇 | 常用的激活函数汇总 | 20+种激活函数介绍及其公式、图像等

22.番外篇 | 史上最全的关于CV的一些经典注意力机制代码汇总

23.番外篇 | 超越SOTA !YOLOv8-ResCBAM集成注意力机制以提高检测性能 !

24.番外篇 | CIB-SE-YOLOv8:针对施工现场的安全设备实时检测

25.番外篇 | 关于YOLOv8网络结构中添加注意力机制的常见方法 | Neck网络

26.番外篇 | YOLO-ELA:高效的局部注意力建模,用于高性能实时缺陷检测 !

27.番外篇 | YOLOv8-GC:全局上下文建模用于儿童手腕骨折检测

28.番外篇 | FCE-YOLOv8:基于特征上下文激励模块的儿童手腕骨折X线影像检测

29.番外篇 | Hyper-YOLO:超图计算与YOLO架构相结合成为目标检测新的SOTA !

30.番外篇 | BGF-YOLO:引入双层路由注意力、广义特征金字塔网络和第四检测头,提高YOLOv8检测性能

31.番外篇 | SEAM-YOLO:引入SEAM系列注意力机制,提升遮挡小目标的检测性能

持续更新中...... 


评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小哥谈

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值