【突破】Meta发布超低功耗AI芯片

Meta推出了名为MTIA的定制AI芯片,旨在提升生成式AI模型的训练效率,该芯片基于RISC-V架构,功耗仅为25瓦。MTIA在处理中低复杂度AI模型时比GPU更高效,主要用于Meta应用的推理任务。此外,Meta还介绍了AI驱动的代码辅助工具CodeCompose和大型语言模型LLaMA,以及计划中的AI中心数据中心设计改进。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

"突破!Meta发布超低功耗AI芯片"

6a3903489d0cb5f1c2eabd3fbba54114.jpeg

Meta发力AI:官宣训练和推理芯片项目,首款定制AI芯片超低功耗

Meta公司继利用人工智能(AI)提升广告效果后,再次在芯片领域发力。据悉,Meta在5月18日公布了旗下数据中心项目中支持AI工作的细节,并宣布推出了一款定制芯片,被称为MTIA,旨在加快生成式AI模型的训练。这是Meta首次推出的AI定制芯片,被列为加速AI训练和推理工作负载的芯片“家族”之一。

MTIA,即Meta训练和推理加速器,是一款ASIC芯片,采用开源芯片架构RISC-V。与主流芯片厂商的产品相比,MTIA芯片的功耗仅为25瓦,大幅降低了能耗。Meta称,他们在2020年设计了第一代MTIA芯片,采用了7纳米工艺。第一代芯片的目标是提高推荐模型的效率,这些模型用于广告和其他新闻推送内容。在Meta设计的基准测试中,第一代MTIA芯片处理低等和中等复杂度的AI模型时,比GPU效率更高。

Meta的软件工程师Joel Cohurn在介绍新芯片时表示,Meta最初使用图形处理单元(GPU)执行推理任务,但发现GPU在这方面并不适合。虽然通过GPU可以对软件进行优化,但在处理真实模型时效率较低,配置上也面临困难和高成本的问题。因此,Meta推出了MTIA芯片。

Meta承认,在处理高复杂度的AI模型时,MTIA芯片还面临一些问题,但指出在中低复杂度的模型处理方面,它比竞争对手的芯片更加高效。

Meta表示,目前MTIA芯片主要应用于Meta应用家族的推理,而非训练任务。然而,Meta强调MTIA芯片大大提高了单位瓦特的推荐负载运行效率,使公司能够运行更强大、更先进的AI工作负载。

虽然Meta在周四的公告中没有透露配置新芯片的具体时间表,也没有提到开发可能用于训练模型的芯片的计划,但同时Meta还宣布计划重新设计其数据中心,针对以AI为核心的网络和冷却系统进行改进。据称,今年将开始建设首个相关数据中心的设施,新设计的成本将降低31%,

建造速度也将是目前数据中心的两倍。

此外,Meta还介绍了一种名为CodeCompose的AI驱动系统,旨在帮助Meta的工程师编写电脑代码。目前,CodeCompose作为Meta的AI助力代码工具,尚未对外公开,但已在公司内部被使用,用于提供Python和其他语言的代码建议。

自从ChatGPT引发了AI热潮后,Meta正努力迎头赶上其他硅谷巨头,在加速开发AI功能方面取得进展。今年2月,Meta推出了面向研究社区的大型语言模型LLaMA,与ChatGPT和必应等聊天机器人不同,LLaMA是一个开源的研究工具,可供政府、社区和学术界的研究人员和实体工作者使用。此外,据报道,Meta还将AI首先应用于广告功能,推出了名为Advantage+的广告产品,通过算法自动生成广告,以满足不同用户的需求。

Meta在上个季度公布的业绩表现超出预期,并承诺在炙手可热的AI领域加大投资。Meta的首席执行官扎克伯格在评价上个季度的业绩时表示,AI推动了公司App和业务取得了良好成果,并在业绩电话会议上表示,他们将同时重视AI和元宇宙的发展。

在Meta宣布推出AI芯片项目之前,其他科技巨头已经有了定制AI芯片的举措。谷歌推出了名为TPU的处理器,用于训练PaLM-2等大型生成式AI系统。亚马逊为其云服务AWS的客户提供了专属的训练和推理芯片。上个月,有媒体报道称,微软正在与AMD合作开发名为Athena的自有AI芯片。

Meta的AI芯片计划显示了其在人工智能领域的雄心壮志。随着AI技术的迅速发展,定制AI芯片的竞争将会更加激烈。这些芯片的推出将进一步推动AI应用的发展,为Meta和其他科技公司在AI领域的竞争提供了新的动力。


aeabdbbce4e004cbb39ffaf0b86bf98c.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

仲夏名瑰

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值