第三节—函数的极限

当x -> ∞时,f(x)的极限

-> ∞符号意义

  1. “x -> ∞” <=> x取实数,且|x|无限增大
  2. “x -> -∞” <=> x< 0的实数,且|x|无限增大
  3. “x -> +∞” <=> x > 0 的实数,且x无限增大
    第二节我们介绍了数列的极限,数列xn = f(n)是函数的一种,自然可以联想将数列极限推广至函数极限:
    (n -> ∞)lim xn = (n -> ∞)lim f(n) = A => (x -> ∞)lim f(x) = A.

定义:

  1. y = f(x) ,当自变量x -> ∞时,f(x)无限接近于某一常数A,则称“当x -> ∞时,f(x)以A为极限”,记作
    (x -> ∞)lim f(x) = A 或 f(x) -> A(x ->∞).
    若当x ->∞时,f(x)不能无限接近于常数,则称“当x -> ∞时,f(x)发散”,或(x -> ∞)lim f(x)不存在.
    如:y = x2,当x -> ∞时,函数值y -> +∞,不能无限接近于常数,故(x -> ∞)lim x2不存在,属于无穷型发散,可记为(x -> ∞)lim x2 = +∞

注意1. 在上述中“x
-> ∞”可换成“ x -> -∞",“x -> -∞”,因题而异。
2. (x -> ∞)lim f(x) = A <=>(x -> -∞)lim f(x) = (x -> +∞)lim f(x) = A
3. 发散在这里插入图片描述

例题

  1. y = arctan x,(x -> ∞)lim f(x)是否存在 (y = (1/3)x)一样,都得讨论正负∞

    当x -> -∞,(x -> ∞)lim f(x) = -2/PI,
    当x -> +∞,(x -> ∞)lim f(x) = 2/PI,不相等因此不存在

当x -> x0时,函数f(x)的极限

”x -> x0" <=> "x无限接近x0,但x ≠ x0
例:y = (x2 - 1)/(x - 1),当x -> 1时,函数值接近于2,与f(x)在x = 1处是否有定义无关。

定义

  1. y = f(x),当x -> x0时,f(x)无限接近于常数A,则称“当x -> x0时,f(x) 以A为极限”,记作
    (x -> x0)lim f(x) = A 或 f(x) -> A(x -> x0).
    否则(f(x)不能无限接近于常数),称“当x -> x0时,f(x)发散",或(x -> x0)lim f(x) 不存在
    注意
    1. (x -> x0)lim f(x) = A <=>自变量x -> x0时,因变量(函数值) ->A
    2. (x -> x0)lim f(x)存在与否,极限值A是多少,与f(x)在x = x0处是否有定义无关,因(x -> x0)lim f(x)求的是f(x)的变化趋势(x -> x0),不是求f(x0).
    3. 求(x -> x0)lim f(x)时,尽可能先约分
    4. 当x -> x0 时,见下图在这里插入图片描述
    有定义可得:请添加图片描述
    求极限一般从左右两侧进行讨论,但是当两次表达式一样无需分段讨论请添加图片描述
    问是否存在极限,判断左右是否相等
    问极限是可以含∞

函数极限的性质(4性质2推论)

  1. (唯一性)若 (x -> x0)lim f(x) = A ,则A唯一。
  2. (局部有界性)若 (x -> x0)lim f(x) = A,则在x0点的去心邻域(0 < |x - x0 |<σ)内,f(x)有界
  3. (局部保号性)若(x -> x0)lim f(x) = A ,A > 0(A < 0),则在x0的去心邻域(0 < |x - x0 |<σ)内,f(x) > 0(f(x) < 0).
    推论(3.)若在x0点的某去心邻域内,f(x)≥0 (≤0),且(x -> x0)lim f(x) = A,则A≥0(≤0)若f(x)>0 (<0),(x -> x0)lim f(x) = A **=>**A ≥0 (A≤0).
  4. (海因定理)(x -> x0)lim f(x) = A <=>对任意{xn}(xn ∈ Df),(x -> x0)lim xn = x0且xn≠ x0,都有(n -> ∞)lim f(xn) = A ,即
    (n -> ∞)lim f(xn) = (x -> x0)lim f(x) = A.
    性质8说明函数极限与数列极限的关系(又叫归结原则)
    请添加图片描述
    推论(4.)两数列{xn(1)}与{xn(2)}.满足 (n -> ∞)lim xn(1) = x0, (n -> ∞)lim xn(2) = x0,(xn(1) ≠ x0 , xn(2) ≠ x0),且(n -> ∞)lim f(xn(1)) = A, (n -> ∞)lim f(xn(2)) = B, A ≠ B,则(x -> x0)lim f(x)不存在。
    由推论可得(x -> 0)limsin(1/x )不存在,(x -> 0)limcos(1/x )不存在.

例题

请添加图片描述
2.若(x -> +∞)lim f(x) = A,则(x -> ∞)lim f(x) = A.
而(x -> ∞)lim f(x) = A不能推出(x -> +∞)lim f(x) = A

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值