大数据算法课设-求解逆序数对的问题

文章介绍了如何利用归并排序和树状数组算法计算整数数组中的逆序对数量,讨论了归并排序的稳定性和空间复杂性,以及树状数组的高效性和复杂性。
摘要由CSDN通过智能技术生成

求解逆序数问题

给定一个整数数组A=(a0,a1…an-1),若i<j且ai>aj,则<ai,aj>就为一个逆序对。例如数组(3,1,4,5,2)的逆序对有<3,1>、<3,2>、<4,2>、<5,2>编写一个实验程序求A中逆序对的个数,即逆序数。

两种算法:归并排序、树状数组算法。

运行结果:

全部代码

#include <stdio.h>
#include <stdlib.h>

#define N 1000007

int a[N];
int nums[N];
int tep[N];
int tree[N];
long long sum = 0;

int lowbit(int x) {
    return x & -x;
}

void modify(int pos, int v, int n) {
    while (pos <= n) {
        tree[pos] += v;
        pos += lowbit(pos);
    }
}

int query(int pos) {
    int ans = 0;
    while (pos > 0) {
        ans += tree[pos];
        pos -= lowbit(pos);
    }
    return ans;
}

void conquer(int l, int mid, int r) {
    int pos1 = l, pos2 = mid + 1;
    int i = l;
    while (pos1 <= mid && pos2 <= r) {
        if (nums[pos1] <= nums[pos2])
            tep[i++] = nums[pos1++];
        else {
            sum += (mid - pos1 + 1);
            tep[i++] = nums[pos2++];
            // 输出逆序对
            for (int k = l; k <= mid; k++) {
                printf("(%d, %d)\n", nums[k], nums[pos2 - 1]);
            }
        }
    }
    for (int j = pos1; j <= mid; j++) tep[i++] = nums[j];
    for (int j = pos2; j <= r; j++) tep[i++] = nums[j];
    for (int j = l; j <= r; j++) nums[j] = tep[j];
}

void divide(int l, int r) {
    if (l == r) return;
    int mid = (l + r) >> 1;
    divide(l, mid);
    divide(mid + 1, r);
    conquer(l, mid, r);
}

int main() {
    int n, choice;
    printf("选择算法:\n");
    printf("1. 使用归并排序算法\n");
    printf("2. 使用树状数组算法\n");
    scanf("%d", &choice);

    printf("输入数组长度:");
    scanf("%d", &n);

    printf("输入数组:");
    // 将输入数组的索引改为从0开始
    for (int i = 0; i < n; i++) {
        scanf("%d", &nums[i]);
    }

    if (choice == 1) {
        // 使用归并排序算法
        divide(1, n );  // 调整索引从0开始
        printf("逆序对的个数为:%lld\n", sum);
	} else if (choice == 2) {
		// 使用树状数组算法
		int ans = 0;
		for (int i = n - 1; i >= 0; i--) { // 调整索引从0开始
		ans += query(nums[i] - 1);
		modify(nums[i], 1, n);
		}
		printf("逆序对的个数为%d\n", ans);
	} else {
	printf("无效选择\n");
	}	
	return 0;
}

相关课设的提问:

为什么使用分治算法

两种算法的优劣

归并的时间复杂度是多少?为什么?

  1. 使用分治算法的原因是为了解决计算数组逆序对个数的问题。分治算法将数组不断划分为更小的子数组,然后合并子数组并计算逆序对个数,这样可以通过逐层合并的方式降低问题的复杂度。

2.优点:归并排序算法的时间复杂度是稳定的,无论最好、平均还是最坏情况都是O(nlogn)。它具有较好的可读性和理解性,并且可以应用于处理大规模数据的场景。

缺点:归并排序需要额外的空间来存储临时数组,空间复杂度为O(n)。此外,归并排序不是原地排序算法,对于大规模数据的排序可能会占用较多的内存。

树状数组算法:

优点:树状数组算法具有较小的空间复杂度,只需要额外的O(n)空间来存储树状数组。它的时间复杂度为O(nlogn),在处理大规模数据时,效率比较高。

缺点:树状数组算法的实现较为复杂,需要掌握树状数组的原理和操作方法。

3. 归并排序的时间复杂度是O(nlogn)。在每一次归并操作中,需要将两个有序的子数组合并成一个有序的数组,时间复杂度为O(n)。而在分治过程中,需要将数组划分为logn层,每一层都需要进行归并操作,因此总体的时间复杂度是O(nlogn)。

  • 16
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值