- 博客(15)
- 收藏
- 关注
原创 吴恩达《机器学习》ex7
本文是吴恩达《机器学习》系列课程习题七的python解答。习题七是无监督学习,应用K-means进行图片压缩,并实践PCA主成分分析。
2023-08-31 15:59:41 108
原创 吴恩达《机器学习》ex6
本文是吴恩达《机器学习》课程习题六的python解答。习题六主题是支持向量机SVM。在练习中会在二维数据集中应用线性SVC和非线性SVC。最后会使用SVM来判断垃圾邮件。
2023-08-31 11:18:57 200
原创 吴恩达《机器学习》ex4
本文是吴恩达《机器学习》习题四的python实现。习题四要求我们自己实现神经网络来对数字图片进行识别,本质上是一个多分类问题。
2023-08-30 14:32:35 164
原创 吴恩达《机器学习》ex3
本文是吴恩达《机器学习》课程中习题三的python实现。习题三要求使用逻辑回归实现对手写数字进行识别,是典型的多分类问题。数据集可在文末获取。
2023-08-30 10:53:19 101
原创 吴恩达《机器学习》ex2
本文是吴恩达《机器学习》课程中的习题二的python实现。习题二主要是二元分类问题,包含有学生录取数据集和芯片生产数据集。本文所使用的数据集,可在文末的百度网盘链接中获取。
2023-08-30 09:49:49 51
原创 吴恩达《机器学习》ex1
习题一围绕线性回归进行,分别在人口(Population)-利润(Profit)数据集和房屋信息数据集(size, num,price)中训练模型,并进行预测。所使用的数据可在文末获取。
2023-08-29 17:57:30 152 1
原创 大数据面试-排序
其实我们的目标就是让我们的数据尽可能的均分在分区之中,我们可以通过调整barrier的范围来完成。例如我们在10000-15000的数据量比较大,我们可以调整barrier到[0-80000),[80000-120000),[120000,160000)...从而将数据尽可能的均分。如果我们知道了大致的数据分布,我们就可以较好的处理划分的问题。所以我们可以先对数据进行采样,然后我们对采样的数据进行排序,再根据采样的结果来作为我们划分barrier的依据。通过这种办法我们可以较好的避免数据倾斜。
2023-05-25 19:36:51 67 1
原创 JVM的组成
Java虚拟机在执行Java程序的过程中会把它管理的内存划分为不同的几个内存区域,每个区域对应不用的用途,创建和销毁的时间。有的区域是随着虚拟机进程的启动而启动,有的则是同用户的线程相关。如未特别指出,本文所讨论的是泛化的JVM,不是某一种特定的JVM实现。根据《Java虚拟机规范》(后简称《规范》)的规定,JVM所管理的内存区域应当包含有:方法区、虚拟机栈、本地方法栈、堆和程序计数器。
2023-05-23 14:24:16 48 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人