- 博客(12)
- 收藏
- 关注
原创 BN批量归一化作用
BN的作用就是将这些输入值或卷积网络的张量进行列数标准化操作,将其放缩到合适的范围,从而加快训练速度;另一方面使得每一层可以尽量面对同一特征分布的输入值,减少了变化带来的不确定性。...
2022-05-13 21:24:18 327
原创 验证集的作用
使用验证集是为了 快速调参,也就是用验证集选择超参数(网络层数,网络节点数,迭代次数,学习率这些)。另外用验证集还可以监控模型是否异常(过拟合啦什么的),然后决定是不是要提前停止训练。验证集的关键在于 选择超参数,我们手动调参是为了让模型在验证集上的表现越来越好,如果把测试集作为验证集,调参去拟合测试集,就有点像作弊了。而测试集既 不参与参数的学习过程,也 不参与参数的选择过程,仅仅用于模型评价。...
2022-04-25 15:52:28 2480
原创 无参数,有参数,空函数的区别
函数定义的三种形式(无参数,有参数,空函数)ZHOUXIN0426于2018-06-05 16:41:00发布4323收藏9文章标签:c/c++java版权#定义函数时的参数就是函数体接收外部传值的一种媒介,其实就一个变量名#1、无参函数:# 在函数定义阶段括号内没有参数,称为无参函数# 注意:定义时无参,意味着调用时也无需传入参数# 应用:#如果函数体代码逻辑不需要依赖外部传入的值,必须定义无参函数def func(): print('he...
2022-04-11 20:23:42 1443
原创 感受野是什么?
在卷积神经网络中,感受野(Receptive Field)的定义是卷积神经网络每一层输出的特征图(feature map)上的像素点在输入图片上映射的区域大小。再通俗点的解释是,特征图上的一个点对应输入图上的区域。...
2022-04-11 14:07:35 445
原创 使用Resnet残差网络的目的
残差网络的设计目的随着网络深度增加,会出现一种退化问题,也就是当网络变得越来越深的时候,训练的准确率会趋于平缓,但是训练误差会变大,这明显不是过拟合造成的,因为过拟合是指网络的训练误差会不断变小,但是测试误差会变大。为了解决这种退化现象,ResNet被提出。我们不再用多个堆叠的层直接拟合期望的特征映射,而是显式的用它们拟合一个残差映射。假设期望的特征映射为H(x),那么堆叠的非线性层拟合的是另一个映射,也就是F(x)=H(x)-x。假设最优化残差映射比最优化期望的映射更容易,也就是F(x)=H(x)-x
2022-04-11 11:04:12 1466
原创 python--flag标识变量
flag = 0a = [1,2,3,4,5]for i in a: if i < 4: if flag == 1: print('嘿嘿和') print('哈哈哈哈') flag = 0 else: print('asdkjfha') flag = 1 else: print('嘿嘿')说明:flag 作...
2022-04-10 15:25:16 4290
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人