internlm集成-2-week7

微调-自动化混合精度处理和缓冲区同步

自动化混合精度处理成为优化模型性能的关键技术之一。这种技术不仅可以加速模型的训练过程,还能在一定程度上减少内存消耗,使得可以在相同的硬件配置下训练更大的模型。下面代码实现了一个包装类,实现了自动化的混合精度处理,并提供了对模型缓冲区进行同步的选项。

主要功能和参数

  • 自动类型转换:根据用户设置,自动将模型及其输入和输出在fp16和fp32之间转换。
  • 缓冲区同步:在并行训练中同步模型的缓冲区,如批标准化中的运行统计数据,确保所有并行节点计算得到一致结果。
  • 灵活控制:提供接口以根据需要启用或禁用输出的类型转换和缓冲区的同步。

构造函数

def __init__(
    self,
    model: nn.Module,
    output_to_fp32: bool = True,
    parallel_mode: ParallelMode = ParallelMode.DATA,
    sync_buffer: bool = True,
    dtype=torch.float16,
):
    super().__init__()
    self.model = model.to(dtype)
    self._output_to_fp32 = output_to_fp32
    self._sync_buf = sync_buffer
    self.dtype = dtype

此构造函数初始化模型并设置初始状态,包括数据类型、是否将输出转换为fp32、是否同步缓冲区等。

缓冲区同步机制

缓冲区同步是分布式训练中一个重要的环节,特别是当使用批标准化(Batch Normalization)等依赖于全局数据统计的层时。NaiveAMPModel通过以下方法实现缓冲区同步:

def _reduce_module_buffer(self):
    buf_list = [buf for buf in self.model.buffers() if buf is not None]
    coalesced_buf = _flatten_dense_tensors(buf_list)
    coalesced_buf.div_(self._world_size)
    dist.all_reduce(coalesced_buf, op=ReduceOp.SUM, group=self._process_group)
    unflattened_buf_list = _unflatten_dense_tensors(coalesced_buf, buf_list)
    for old, new in zip(buf_list, unflattened_buf_list):
        old.copy_(new)

该方法首先平铺(flatten)所有缓冲区,执行全局的平均操作,然后再展开(unflatten)回原来的形状,并更新每个节点的缓冲区。

前向传播与自动类型转换

在每次前向传播调用时,forward方法会根据设定自动处理输入和输出的数据类型转换,确保运算的精度和效率:

def forward(self, *args, **kwargs):
    if self._sync_buf:
        with torch.no_grad():
            self._reduce_module_buffer()
    args = [self._convert_to_fp16(arg) for arg in args]
    out = self.model(*args, **kwargs)
    if self._output_to_fp32:
        out = self._convert_to_fp32(out)
    return out
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值