3-2 梯度与反向传播

3-2 梯度与反向传播

主目录点这里
梯度的含义
在这里插入图片描述
可以看到红色区域的变化率较大,梯度较大;绿色区域的变化率较小,梯度较小。
在二维情况下,梯度向量的方向指向函数增长最快的方向,而其大小表示增长的速率。
梯度的计算
在这里插入图片描述
在这里插入图片描述
当然我们不必学太深的纯运算,来看看python是怎么解决的

import numpy as np
import matplotlib.pyplot as plt
import sympy as sp
def gradient(f, variables, point):
    gradients = [sp.diff(f, var) for var in variables]
    gradient_at_point = [grad.evalf(subs=dict(zip(variables
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

过于真实呢

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值