动态规划(dp)-最优路径

蒜头君要回家,已知蒜头君在 左下角(1,1)位置,家在 右上角(n,n)坐标处。蒜头君走上一个格子就会花费相应体力,而且蒜头君只会往家的方向走,也就是只能往上,或者往右走。蒜头君想知道他回到家需要花费的最少体力是多少。
例如下图所示,格子中的数字代表走上该格子花费的体力:

对于该图来说,最优策略已在图上标出,最少花费体力为:3+2+4+3=12。我们把走到一个点看做一个状态,对蒜头君来说,走到一个点只有两种方式,一个是从下面走到该点,一种是从左边走到该点。那么点(i,j)要么是从(i- 1,j)走到(i,j),要么是从点(i,j - 1)走到(i,j)。所以从哪个点走到(ù,j)就是一个 决策。接下来,我们用 dp(i,j)来代表走到点(i,j)一共花费的最少体力。我们需要花费最少力气走到家,所以可以得到状态转移方程:dp(i,j)= min(dp(i-1,j),dp(i,j-1))+ aij。根据转移方程,我们可以推出走到每个点花费的最少体力。
对于图中的边界点,要在转移前加上判断是否为边界,如:点(1,3)只能从点(1,2)走过来,点(3,1)只能从点(2,1)走过来等等。

动态规划的题目的核心是写出状态转移方程,对于一个动态规划的题目,如果我们能写出转移方程那么代码实现就变得简单多。大部分的动态规划题目,在计算出转移方程后,可以用类似于递推的循环结构,来写出代码。

注:输入样例将上图倒回来用数组存储,所以条件改为只能向下走和向左走

输入样例:

3
0 3 4
6 2 5
5 4 3

输出样例:
12

import java.util.*;

public class LANQIAO1 {
    public static int[][] a = new int[110][110];
    public static int[][] dp = new int[110][110];
    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        int n = sc.nextInt();
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= n; j++) {
                a[i][j] = sc.nextInt();
            }
        }
        // 从1 1开始,以1 1为起点
        dp[1][1] = 0;
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= n; j++) {
                // 将起点情况排除
                if(i == 1 && j == 1){
                    continue;
                }
                // 处理两种边界情况
                else if(i == 1){
                    dp[i][j] = dp[i][j - 1] + a[i][j];
                }
                else if(j == 1){
                    dp[i][j] = dp[i - 1][j] + a[i][j];
                }
                // 取二者较小值
                else {
                    dp[i][j] = Math.min(dp[i][j-1] , dp[i-1][j]) + a[i][j];
                }
            }
        }
        System.out.println(dp[n][n]);
        return;
    }
}
  • 38
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
动态规划可以用来解决一类具有最优子结构的问题,其最优子结构指的是问题的最优解可以通过子问题的最优解来构造。动态规划的一般思考过程如下: 1. 确定问题的状态:将原问题划分为若干个子问题,并定义每个子问题的状态。 2. 定义状态转移方程:根据子问题之间的关系,确定状态之间的转移方式。 3. 确定初始条件:确定最简单的子问题的解,即初始状态。 4. 确定计算顺序:根据状态转移方程,确定计算状态的顺序,通常是从初始状态开始,按照某种顺序计算其他状态。 5. 计算最优解:根据计算顺序,依次计算每个状态的值,直到计算出最终的目标状态的值。 动态规划与分治、回溯、贪心算法有以下区别和联系: - 区别: - 分治算法将问题划分为若干个子问题,然后分别求解子问题,最后将子问题的解合并得到原问题的解。而动态规划则是通过求解子问题的最优解来构造原问题的最优解。 - 回溯算法通过不断回溯和尝试所有可能的解来求解问题,而动态规划则是通过存储已经计算过的子问题的解来避免重复计算,提高效率。 - 贪心算法每次都选择当前看起来最优的解,而不考虑全局最优解。而动态规划则是通过计算每个状态的值来确定最优解。 - 联系: - 动态规划和分治算法都是将问题划分为若干个子问题,并通过求解子问题的解来构造原问题的解。 - 动态规划和回溯算法都可以用于求解具有最优子结构的问题,但动态规划通过存储已经计算过的子问题的解来避免重复计算,提高效率。 以下是一个使用动态规划求解最优路径的示例: 假设有一个网格,每个格子上都有一个非负整数代表该格子的权值,从左上角出发,每次只能向右或向下移动一格,求从左上角到右下角的路径,使得路径上的权值之和最小。 ```python def minPathSum(grid): m = len(grid) n = len(grid[0]) # 初始化dp数组 dp = [[0] * n for _ in range(m)] # 计算第一行和第一列的最小路径dp[0][0] = grid[0][0] for i in range(1, m): dp[i][0] = dp[i-1][0] + grid[i][0] for j in range(1, n): dp[0][j] = dp[0][j-1] + grid[0][j] # 计算其他位置的最小路径和 for i in range(1, m): for j in range(1, n): dp[i][j] = min(dp[i-1][j], dp[i][j-1]) + grid[i][j] return dp[m-1][n-1] grid = [[1,3,1],[1,5,1],[4,2,1]] print(minPathSum(grid)) # 输出:7 ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值