整型变量在内存中的存储
原码、反码、补码的介绍:
原码 - 直接将数据按照正负数的形式翻译成二进制即可
反码 - 将原码的符号位不变,其它位按位取反得到
补码 - 反码+1得到
以上整数的三种表示方法均有符号位和数值位两部分,其中最高位是符号位(0表示正,1表示负),其它位都是数值位。
如果是负数,那它的三种表示形式各不相同,而正数的原、反、补码都相同。
对于整形来说:数据在内存中存放的是补码
为什么呢?
原因在于:
- 使用补码,可以将符号位和数值域统一处理
- 加法和减法也可以统一处理(CPU只有加法器)
- 补码与原码相互转换,其运算过程是相同的,不需要额外的硬件电路(原码->补码的运算步骤,也可以适用于将补码->原码)
int main()
{
int a = 1 - 1;
//CPU只有加法器
//1-1 -> 1+(-1)
//使用补码的二进制计算
// 00000000000000000000000000000001 - 1的补码
// 11111111111111111111111111111111 - -1的补码
//100000000000000000000000000000000
// 00000000000000000000000000000000 - 0(原反补相同)
//
//使用原码计算是错误的
//00000000000000000000000000000001 - 1的原码
//10000000000000000000000000000001 - -1的原码
//10000000000000000000000000000010 - 错误的原码结果
return 0;
}
浮点型变量在内存中的存储
根据国际标准IEEE(电气和电子工程协会)754,任意一个二进制浮点数V可以表示成下面的形式:
- (-1)^S * M * 2^E
- (-1)^S表示符号位,当S=0,V为正数;当S=1,V为负数
- M表示有效数字,大于等于1,小于2
- 2^E表示指数位
对于32位的浮点数,最高的1位是符号位S,接着的8位是指数E,剩下的23位是有效数字M
对于64位的浮点数,最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M
IEEE754对有效数字M和指数E,还有一些特别规定。
因为
1
≤
M
<
2
1\leq M<2
1≤M<2,也就是说,M可以写成1.xxxxxx的形式,其中xxxxxx表示小数部分
IEEE754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的xxxxxx部分。比如保存1.01时,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第一位的1舍去以后,等于可以保存24位有效数字。
至于指数E,情况就比较复杂。
首先,E是一个无符号整数(unsigned int)
这意味着,如果E为8位,它的取值范围为0~255;如果E为11位,他的取值范围为0~2047。但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE754规定,存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数时127;对于11位的E,这个中间数时1023。比如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001
然后,指数E从内存中取出还可以再分成三种情况:
- E不为全0也不为全1
这时,指数E的计算值减去127(或1023),得到真实值,再将有效数字M前加上第一位的1
- E为全0
这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,有效数字M不再加上第一位的1,而是还原为0.xxxxx的小数
这样做是为了表示±0,以及接近于0 的很小的数字
- E为全1
表示±无穷大(正负取决于符号位S)
举例说明:
int main()
{
int n = 9;
float* pFloat = (float*)&n;
printf("n的值为:%d\n",n);
printf("*pFloat的值为:%f\n",*pFloat);
*pFloat = 9.0;
printf("num的值为:%d\n",n);
printf("*pFloat的值为:%f\n",*pFloat);
return 0;
}
9:
00000000000000000000000000001001 - 原反补相同
9.0:
1001.0
S=0
M=1.001
E=3+127=130
0 10000010 00100000000000000000000 - 9.0f在内存中的存储
将9以浮点数的形式进行解读:
0 00000000 00000000000000000001001
S=0
此时,E的存储为全0,所以E=1-127=-126
M不再加上第一位的1,所以M=0.00000000000000000001001
最终计算结果:(-1)\^0 * 0.00000000000000000001001 * 2\^(-126)
是一个极小的正数,近似为0
将9.0f以整形的形式进行解读:
01000001000100000000000000000000 - 最高位是0,是正数,原反补相同
最终计算结果:1,091,567,616