目录
一、冒泡排序
原理:每次比较两个相邻的元素,将较大的元素交换至右端。
思路:每次冒泡排序操作都会将相邻的两个元素进行比较,看是否满足大小关系要求,如果不满足,就交换这两个相邻元素的次序,一次冒泡至少让一个元素移动到它应该排列的位置,重复N次,就完成了冒泡排序。
package 排序方法大全;
public class maopaoSort {
public maopaoSort(int []array){
for(int i=0;i<array.length-1;i++){
boolean flg=false;
for(int j=0;j<array.length-1-i;j++){
if(array[j]>array[j+1]){
int tmp=array[j];
array[j]=array[j+1];
array[j+1]=tmp;
flg=true;
}
}
if(flg==false){
break;
}
}
System.out.println("array[]");
}
}
二、选择排序
原理:每一趟从待排序的记录中选出最小的元素,顺序放在已排好序的序列最后,直到全部记录排序完毕。
思路:首先,找到数组中最小的元素,其次,将它和数组的第一个元素交换位置,再次,在剩下的元素中找到最小的元素,将它与数组的第二个元素交换位置,如此往复,直到整个数组排序,每次交换都能排定一个元素,因此交换的总次数是N,所以算法的时间效率取决于比较的次数,交换次数和数组的大小是线性关系。
package 排序方法大全;
public class xuanzeSort {
public xuanzeSort(int []array){
for(int i=0;i<array.length;i++){
for(int j=i+1;j<array.length;j++){//tmp作为一个中间值;
if(array[j]<array[i]){
int tmp=array[j];
array[j]=array[i];
array[i]=tmp;
}
}
System.out.println("array[]");
}
}
}
三、插入排序
原理:每一步将一个待排序的记录,插入到前面已经排好序的有序序列中去,直到插完所有元素为止。
思想:想必你肯定打过扑克牌吧,在一张一张揭牌的时候,是不是每次揭一张牌将其插入到其他已经有序的牌中的适当位置,如果你没有这个经历,赶紧约一波小伙伴,斗一把。与选择排序一样,把要排序的数据分为已排序区间和未排序序列。初始已排序区间只有一个元素,就是数组的第一个元素,然后取未排序区间中的元素,在已排序区间中找到合适的插入位置将其插入,并保证已排序区间数据一直有序。重复这个过程,直到未排序区间中元素为空。
package 排序方法大全;
public class charusort {//插入排序
public charusort(int []array){
for(int i=1;i<array.length;i++){
int tmp=array[i];//tmp:
int j=i-1;
for(;j>=0;j--){
if(array[j]>tmp){
array[j+1]=array[j];
}else {
break;
}
}
array[j+1]=tmp;
}
System.out.println("array[]");
}
}
四、快速排序
方法其实很简单:分别从初始序列“6 1 2 7 9 3 4 5 10 8”两端开始“探测”。先从右往左找一个小于6的数,再从左往右找一个大于6的数,然后交换他们。这里可以用两个变量i和j,分别指向序列最左边和最右边。我们为这两个变量起个好听的名字“哨兵i”和“哨兵j”。刚开始的时候让哨兵i指向序列的最左边(即i=1),指向数字6。让哨兵j指向序列的最右边(即=10),指向数字。
首先哨兵j开始出动。因为此处设置的基准数是最左边的数,所以需要让哨兵j先出动,这一点非常重要(请自己想一想为什么)。哨兵j一步一步地向左挪动(即j–),直到找到一个小于6的数停下来。接下来哨兵i再一步一步向右挪动(即i++),直到找到一个数大于6的数停下来。最后哨兵j停在了数字5面前,哨兵i停在了数字7面前。
现在交换哨兵i和哨兵j所指向的元素的值。交换之后的序列如下:
6 1 2 5 9 3 4 7 10 8
到此,第一次交换结束。接下来开始哨兵j继续向左挪动(再友情提醒,每次必须是哨兵j先出发)。他发现了4(比基准数6要小,满足要求)之后停了下来。哨兵i也继续向右挪动的,他发现了9(比基准数6要大,满足要求)之后停了下来。此时再次进行交换,交换之后的序列如下:
6 1 2 5 4 3 9 7 10 8
第二次交换结束,“探测”继续。哨兵j继续向左挪动,他发现了3(比基准数6要小,满足要求)之后又停了下来。哨兵i继续向右移动,糟啦!此时哨兵i和哨兵j相遇了,哨兵i和哨兵j都走到3面前。说明此时“探测”结束。我们将基准数6和3进行交换。交换之后的序列如下:
3 1 2 5 4 6 9 7 10 8
到此第一轮“探测”真正结束。此时以基准数6为分界点,6左边的数都小于等于6,6右边的数都大于等于6。回顾一下刚才的过程,其实哨兵j的使命就是要找小于基准数的数,而哨兵i的使命就是要找大于基准数的数,直到i和j碰头为止。
OK,解释完毕。现在基准数6已经归位,它正好处在序列的第6位。此时我们已经将原来的序列,以6为分界点拆分成了两个序列,左边的序列是“3 1 2 5 4”,右边的序列是“9 7 10 8”。接下来还需要分别处理这两个序列。因为6左边和右边的序列目前都还是很混乱的。不过不要紧,我们已经掌握了方法,接下来只要模拟刚才的方法分别处理6左边和右边的序列即可。现在先来处理6左边的序列现吧。
左边的序列是“3 1 2 5 4”。请将这个序列以3为基准数进行调整,使得3左边的数都小于等于3,3右边的数都大于等于3。好了开始动笔吧
如果你模拟的没有错,调整完毕之后的序列的顺序应该是:
2 1 3 5 4
OK,现在3已经归位。接下来需要处理3左边的序列“2 1”和右边的序列“5 4”。对序列“2 1”以2为基准数进行调整,处理完毕之后的序列为“1 2”,到此2已经归位。序列“1”只有一个数,也不需要进行任何处理。至此我们对序列“2 1”已全部处理完毕,得到序列是“1 2”。序列“5 4”的处理也仿照此方法,最后得到的序列如下:
1 2 3 4 5 6 9 7 10 8
对于序列“9 7 10 8”也模拟刚才的过程,直到不可拆分出新的子序列为止。最终将会得到这样的序列,如下
1 2 3 4 5 6 7 8 9 10
到此,排序完全结束。细心的同学可能已经发现,快速排序的每一轮处理其实就是将这一轮的基准数归位,直到所有的数都归位为止,排序就结束了。下面上个霸气的图来描述下整个算法的处理过程。
这是为什么呢?
快速排序之所比较快,因为相比冒泡排序,每次交换是跳跃式的。每次排序的时候设置一个基准点,将小于等于基准点的数全部放到基准点的左边,将大于等于基准点的数全部放到基准点的右边。这样在每次交换的时候就不会像冒泡排序一样每次只能在相邻的数之间进行交换,交换的距离就大的多了。因此总的比较和交换次数就少了,速度自然就提高了。当然在最坏的情况下,仍可能是相邻的两个数进行了交换。因此快速排序的最差时间复杂度和冒泡排序是一样的都是O(N2),它的平均时间复杂度为O(NlogN)。其实快速排序是基于一种叫做“二分”的思想。我们后面还会遇到“二分”思想,到时候再聊。
package 排序方法大全;
public class kuaisuSort {
public static void kuaisuSort(int []array,int low,int high) {
if(low>=high){
return;
}
int left=low;
int right=high;
int base = array[low];
while (left!=right) {//从后面开始检索 遇到比基准数小的就停下,遇到比基准数大于等于的就继续检索
while (array[right]>=base&&left<right) {//left小于right 防止越界 比如数组内所有元素都比base小就会一路走下去
right--;
}
while (array[left] <= base&&left<right) {
left++;
}
int temp=array[left];
array[left]=array[right];
array[right]=temp;
}
//交换基准值和相遇位置的值
array[low]=array[left];//相遇的值一定小于基准值
array[left]=base;
kuaisuSort(array,low,left-1);
kuaisuSort(array,left+1,high);
}
}