机器学习
文章平均质量分 77
禾风wyh
北京邮电大学本科生
展开
-
【机器学习】联邦学习 Federated Learning
app把这些数据收集起来,发送到Google云端,然后Google在自己的集群上来训练模型,Google有足够的计算资源,这样不就解决了吗?之前的时候学习过并行算法或者是分布式算,其中有一种编程模型,Parameter Server,我们可以用这种模型训练神经网络, 计算几乎都是Worker做的,Server端存储模型参数或者更新模型参数。每家医院都有自己的数据,可以用来训练自己的模型将实现预测等,但是每家的数据都不多,训练的效果也不好。最简单的方法就是将数据整合起来,在服务器上将模型进行训练。原创 2024-10-16 12:03:41 · 393 阅读 · 0 评论 -
【机器学习】并行计算(parallel computation)Part2
Parameter Server这种编程模型可以实现异步并行梯度下降,架构采用的是Client-Server,通信方式是Message-passing,同步方式是异步的(Asynchronous)。Ray是一个开源软件系统,支持Parameter Server。同步算法:算法加速比会很低,时间会大量浪费在等待上。异步算法: Worker不会空转,整个系统效率会很高。异步算法可以这样进行实现:在worker上利用本地数据计算梯度,然后将计算好的梯度发送给server,并接受更新后的梯度。原创 2024-10-15 09:15:22 · 801 阅读 · 0 评论 -
【机器学习】深度学习、强化学习和深度强化学习?
深度学习、强化学习和深度强化学习是机器学习的三个重要子领域。它们有着各自独特的应用场景和研究目标,虽然都属于机器学习的范畴,但各自的实现方式和侧重点有所不同。原创 2024-10-06 21:14:34 · 1630 阅读 · 0 评论 -
【深度学习论文阅读】四大分类网络之AlexNet
【深度学习】四大分类网络之AlexNet原创 2023-07-18 15:04:53 · 249 阅读 · 0 评论 -
【机器学习】并行计算(parallel computation)Part1
为什么我们在机器学习中需要用到并行计算呢,因为现在最流行的机器学习算法都是神经网络,神经网络模型的计算量、参数量都很大,比如ResNet-50参数量为25M。而我们在训练的时候使用的数据集也很大,比如ImageNet数据集含有14M张图片。原创 2024-10-11 11:25:27 · 880 阅读 · 0 评论 -
【机器学习】机器学习框架
机器学习框架是支持开发、训练、和部署机器学习模型的工具集和库,以下是一些主流的机器学习框架及其特点:原创 2024-10-06 20:45:31 · 1236 阅读 · 0 评论 -
【机器学习】吴恩达课程2-单变量线性回归
【机器学习】吴恩达课程2-单变量线性回归原创 2023-07-17 15:54:40 · 353 阅读 · 0 评论 -
【机器学习】吴恩达课程1-Introduction
【机器学习】吴恩达课程1-Introduction原创 2023-07-15 14:59:59 · 2415 阅读 · 0 评论