- 博客(2)
- 收藏
- 关注
原创 论文阅读笔记(二) Fine-Grained Open-Set Deepfake Detection via Unsupervised Domain Adaptation
分为源域和目标域,1)在源域训练一个分类模型M,特征提取器E,2)然后用这个特征提取器对目标域的图像进行特征提取,3)然后对提取的特征进行聚类将图像分类,4)将目标域的部分类别和源域的类别进行对齐,5)使用源域和目标域的数据和标签对模型进行重训练。目标域有的标签和源域的标签可能是相同的,需要进行匹配,然后对剩下的目标域类别指定新的伪造标签。具体做法是:对源域和目标域的每个类的图像采样p张图像,提取特征,计算距离,如果距离小于一个阈值,则将目标域的某类分为源域中的某个标签。选取转折点作为聚类数量就是最优。
2024-11-27 17:28:32
449
1
原创 deepfake detection论文阅读笔记(一):Transcending Forgery Specificity with Latent Space Augmentation
通过蒸馏学习的这种方式来使学生模型学习到来自不同伪造类型的特征,并通过增强增强技术来拓展伪造的边界包括跨域的和域内的,提升了模型的泛化性。
2024-11-25 22:06:14
1320
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人