容斥原理和博弈论

  • 容斥原理

对于下图来说,有三个集合,这三个集合的并集为A + B + C - B ∩ C - A ∩ B - A ∩ C + A ∩ B ∩ C ,第一步是每次取一个集合将这一个所有元素全加上,但当两个集合有相同元素时就会导致该相同元素加了两次,第二步操作就要去掉两个集合相交的元素,在三个集合有相同元素时该元素加了三次,而第二部时该元素又去掉了三次,所以最后要加上A ∩ B ∩ C 的情况。

 

当集合增加时,遵循加上奇数集合,减去偶数集合的规律

当有n个集合时,在这n个中选择任意个集合的情况有2^m种:C(0, n)+C(1, n)+C(2, n)+...+C(n, n) = 2^n  

一个例题:AcWing 890. 能被整除的数    

题目:

给定一个整数 n 和 m 个不同的质数p1,p2,…,pm。

请你求出 1∼n 中能被p1,p2,…,pm 中的至少一个数整除的整数有多少个。

输入格式

第一行包含整数 n 和 m。

第二行包含 m个质数。

输出格式

输出一个整数,表示满足条件的整数的个数。

数据范围

1≤m≤16,
1≤n,pi≤10^9

分析:转化到集合上面,一共有m个集合,第i个集合表示在1-n能被pi整除的数的集合,目的是求所有集合的并集,要去重。枚举所有集合的情况是通过位运算的方式,共有2^n-1种情况,在1-2^n-1中的每一个数(代表一种集合选择情况)用n位表示出来,在某一位上是1表示选择该集合,是0代表不选该集合。

#include <bits/stdc++.h>

using namespace std;

const int M = 20;

typedef long long LL;

int prime[M];

int main()
{
    int sum = 0;
    int n, m;
    cin >> n >> m;
    
    for(int i = 0; i < m; i ++) cin >> prime[i];
    
    for(int i = 1; i < (1 << m); i ++)
    {
        int res = 1, cnt = 0;
        for(int j = 0; j < m; j ++)
        {
            if(i >> j & 1) 
            {
                if((LL)res * prime[j] > n) 
                {
                    res = -1;
                    break;
                }
            
            res =(LL) res * prime[j];
            cnt ++;
            }
        }
        
        if(res != -1)
            if(cnt % 2) sum += n / res;
            else sum -= n / res;
        
    }
    cout << sum << endl;
    return 0;
}

如果选择奇数个集合就加上,偶数个集合就减去

  • 博弈论

一.  给定 n 堆石子,两位玩家轮流操作,每次操作可以从任意一堆石子中拿走任意数量的石子(可以拿完,但不能不拿),最后无法进行操作的人视为失败。问如果两人都采用最优策略,先手是否必胜。

将n堆石子进行异或,若异或后的值=0说明先手必输,若异或后的值不等于0说明先手必胜。

证明:当所有石子数都是0时,异或的结果=0,此时先手将无石头可拿,必输。当异或结果不为0,设a1^a2^...^an = x ,x的二进制的最高位为第k位,在a1-an中也存在一个数ai的第k位为1,a1^x < ai 设z=ai - ai^x,用ai=ai-z = ai^x 带入a1^a2^...^an = x中发现a1^a2...^an=0故当异或结果不为0,可对a1-an的某一个数进行一些操作是其异或为0,故先手的异或不为0时总能进行一些操作将异或结果为0的局面给后手,输的永远是后手。

#include <bits/stdc++.h>

using namespace std;

const int N = 1e5 + 10;

int s[N];
int n;

int main()
{
    cin >> n;
    for(int i = 0; i < n; i ++) scanf("%d", &s[i]);
    
    int res = s[0];
    for(int i = 1; i < n; i ++)  res = res ^ s[i];
    
    if(res) cout << "Yes" << endl;
    else cout << "No" << endl;
    return 0;
}

 二  mex函数:对于mex{2, 3, 4}返回的是不在此集合里面的最小的自然数即0,sg函数:sg(x)=mex{2, 3, 4}表示值为x的sg函数值为0,sg函数用来判断值为x时的下一步的路径,当前值y无路可走时,则sg(y) = 0

 

 对于单个图来说,若先手走到sg(x)=0这一步则说明必输,因为后手下一步是非零,且后手能保证后手始终是非零,先手始终是0。若先手sg(x)!=0则说明必胜,因为先手能保证后手始终是0。

对于n个图来说,若所有图只有一个节点时,先手必输,也就是sg1^sg2...^sgn=0,当sg1^sg2...^sgn=x时,总能找到sgi ^ x < sgi 则总能在1-sgi中找到sgi^x带入原式使其异或结果为零,也就是说先手必胜。

一个例题:AcWing 893. 集合-Nim游戏

给定 n 堆石子以及一个由 k 个不同正整数构成的数字集合 S。

现在有两位玩家轮流操作,每次操作可以从任意一堆石子中拿取石子,每次拿取的石子数量必须包含于集合 S,最后无法进行操作的人视为失败。

问如果两人都采用最优策略,先手是否必胜。

输入格式

第一行包含整数 k,表示数字集合 S 中数字的个数。

第二行包含 k 个整数,其中第 i 个整数表示数字集合S 中的第 i 个数 si。

第三行包含整数 n。

第四行包含 n 个整数,其中第 i 个整数表示第 i 堆石子的数量 hi。

输出格式

如果先手方必胜,则输出 Yes

否则,输出 No

数据范围

1≤n,k≤1001≤n,k≤100,
1≤si,hi≤10000

 代码:

#include <bits/stdc++.h>

using namespace std;

const int N = 110, M = 1e5 + 10;

int s[N], f[M];
int n, k;

int get(int n)
{
    if(f[n] != -1) return f[n];
    
    unordered_set<int> set;
    for(int i = 1; i <= k; i ++)
        if(n >= s[i]) set.insert(get(n - s[i]));
    
    for(int i = 0; i < k; i ++)
        if(!set.count(i))
            return f[n] = i;
    
}

int main()
{
    cin >> k;
    for(int i = 1; i <= k; i ++) scanf("%d", &s[i]);
    cin >> n;
    
    memset(f, -1 ,sizeof f);
    
    int res = 0;
    for(int i = 1; i <= n; i ++) 
    {
        int x;
        scanf("%d", &x);
        res = res ^ get(x);
    }
    
    if(res) cout << "Yes" << endl;
    else cout << "No" << endl;
    
    
    return 0;
}

用到记忆化搜索和unordered_set知识

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值