洛谷刷题(普及-):一元三次方程求解、数的计算、最大公约数和最小公倍数问题、求先序排列、均分纸牌

记录洛谷刷题qaq


[NOIP2001 提高组] 一元三次方程求解

题目描述

有形如: a x 3 + b x 2 + c x + d = 0 a x^3 + b x^2 + c x + d = 0 ax3+bx2+cx+d=0 这样的一个一元三次方程。给出该方程中各项的系数( a , b , c , d a,b,c,d a,b,c,d 均为实数),并约定该方程存在三个不同实根(根的范围在 − 100 -100 100 100 100 100 之间),且根与根之差的绝对值 ≥ 1 \ge 1 1。要求由小到大依次在同一行输出这三个实根(根与根之间留有空格),并精确到小数点后 2 2 2 位。

提示:记方程 f ( x ) = 0 f(x) = 0 f(x)=0,若存在 2 2 2 个数 x 1 x_1 x1 x 2 x_2 x2,且 x 1 < x 2 x_1 < x_2 x1<x2 f ( x 1 ) × f ( x 2 ) < 0 f(x_1) \times f(x_2) < 0 f(x1)×f(x2)<0,则在 ( x 1 , x 2 ) (x_1, x_2) (x1,x2) 之间一定有一个根。

输入格式

一行, 4 4 4 个实数 a , b , c , d a, b, c, d a,b,c,d

输出格式

一行, 3 3 3 个实根,从小到大输出,并精确到小数点后 2 2 2 位。

样例 #1

样例输入 #1

1 -5 -4 20

样例输出 #1

-2.00 2.00 5.00

提示

【题目来源】

NOIP 2001 提高组第一题

代码如下

#include<string.h>
#include<stdio.h>
#include<math.h>
#include <stdlib.h>

double a,b,c,d;
double fc(double x)
{
    return a*x*x*x+b*x*x+c*x+d;
}
int main()
{
    double l,r,m,x1,x2;
    int s=0,i;
    scanf("%lf%lf%lf%lf",&a,&b,&c,&d);  
    for (i=-100;i<100;i++)
    {
        l=i; 
        r=i+1;
        x1=fc(l); 
        x2=fc(r);
        if(!x1) 
        {
            printf("%.2lf ",l); 
            s++;
        }     
                        
                       
        if(x1*x2<0)                             
        {
            while(r-l>=0.001)                   
            {
                m=(l+r)/2;  //middle
                if(fc(m)*fc(r)<=0) 
                   l=m; 
                else 
                   r=m;   
            }
            printf("%.2lf ",r);  

            s++;
        }
        if (s==3) 
            break;             
            
    }
    return 0;
}

[NOIP2001 普及组] 数的计算

题目描述

我们要求找出具有下列性质数的个数(包含输入的正整数 n n n)。

先输入一个正整数 n n n n ≤ 1000 n \le 1000 n1000),然后对此正整数按照如下方法进行处理:

  1. 不作任何处理;

  2. 在它的左边拼接一个正整数,但该正整数不能超过原数,或者是上一个被拼接的数的一半;

  3. 加上数后,继续按此规则进行处理,直到不能再加正整数为止。

输入格式

一行,一个正整数 n n n n ≤ 1000 n \le 1000 n1000)。

输出格式

一个整数,表示具有该性质数的个数。

样例 #1

样例输入 #1

6

样例输出 #1

6

提示

【样例解释】

满足条件的数为: 6 6 6 16 16 16 26 26 26 126 126 126 36 36 36 136 136 136

【题目来源】

NOIP 2001 普及组第一题

代码如下

#include<string.h>
#include<stdio.h>
#include<math.h>
#include <stdlib.h>

int main(){
    int n,cnt=1,i,f[1010];
    f[0]=f[1]=1;
    scanf("%d",&n);
    for(i=2;i<=n;i++){
        if(i%2==0){
            f[i]=f[i-1]+f[i/2];
        }else{
            f[i]=f[i-1];
        }
    }
    printf("%d\n",f[n]);
}

[NOIP2001 普及组] 最大公约数和最小公倍数问题

题目描述

输入两个正整数 x 0 , y 0 x_0, y_0 x0,y0,求出满足下列条件的 P , Q P, Q P,Q 的个数:

  1. P , Q P,Q P,Q 是正整数。

  2. 要求 P , Q P, Q P,Q x 0 x_0 x0 为最大公约数,以 y 0 y_0 y0 为最小公倍数。

试求:满足条件的所有可能的 P , Q P, Q P,Q 的个数。

输入格式

一行两个正整数 x 0 , y 0 x_0, y_0 x0,y0

输出格式

一行一个数,表示求出满足条件的 P , Q P, Q P,Q 的个数。

样例 #1

样例输入 #1

3 60

样例输出 #1

4

提示

P , Q P,Q P,Q 4 4 4 种:

  1. 3 , 60 3, 60 3,60
  2. 15 , 12 15, 12 15,12
  3. 12 , 15 12, 15 12,15
  4. 60 , 3 60, 3 60,3

对于 100 % 100\% 100% 的数据, 2 ≤ x 0 , y 0 ≤ 10 5 2 \le x_0, y_0 \le {10}^5 2x0,y0105

【题目来源】

NOIP 2001 普及组第二题

代码如下

#include<string.h>
#include<stdio.h>
#include<math.h>
#include <stdlib.h>

typedef long long ll;
int m,n,ans,flag;
ll gcd(ll x,ll y)
{
    if(y==0)    {return x;}
    return gcd(y,x%y);
}
int main()
{
    scanf("%d%d",&n,&m);
    for(int i=1;i<=sqrt(1ll*m*n);i++)
    {
        if((1ll*n*m)%i==0&&gcd(i,(1ll*n*m)/i)==n)
        {
            ans++;
            if(1ll*i*i==1ll*n*m)  flag=1;
        }
    }
    printf("%d\n",2*ans-flag);
    return 0;
}

[NOIP2001 普及组] 求先序排列

题目描述

给出一棵二叉树的中序与后序排列。求出它的先序排列。(约定树结点用不同的大写字母表示,且二叉树的节点个数 $ \le 8$)。

输入格式

共两行,均为大写字母组成的字符串,表示一棵二叉树的中序与后序排列。

输出格式

共一行一个字符串,表示一棵二叉树的先序。

样例 #1

样例输入 #1

BADC
BDCA

样例输出 #1

ABCD

提示

【题目来源】

NOIP 2001 普及组第三题

代码如下

#include<string.h>
#include<stdio.h>
#include<math.h>
#include <stdlib.h>

char mid[20], aft[20];
void dfs(int ml, int mr, int al, int ar) {
    if (ml > mr || al > ar) {
        return;
    }
    printf("%c", aft[ar]);
    for (int k = ml; k <= mr; k++) {
        if (mid[k] == aft[ar]) {
            dfs(ml, k-1, al, al+k-ml-1);
            dfs(k+1, mr, al+k-ml, ar-1);
            break; 
        }
    }
}
int main(void) {
    scanf("%s", mid);
    scanf("%s", aft);
    int len = strlen(mid) - 1;
    dfs(0, len, 0, len);
    return 0;    
}

[NOIP2002 提高组] 均分纸牌

题目描述

N N N堆纸牌,编号分别为 1 , 2 , … , N 1,2,…,N 1,2,,N。每堆上有若干张,但纸牌总数必为 N N N 的倍数。可以在任一堆上取若干张纸牌,然后移动。

移牌规则为:在编号为 1 1 1 堆上取的纸牌,只能移到编号为 2 2 2 的堆上;在编号为 N N N 的堆上取的纸牌,只能移到编号为 N − 1 N-1 N1 的堆上;其他堆上取的纸牌,可以移到相邻左边或右边的堆上。

现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多。

例如 N = 4 N=4 N=4 时, 4 4 4 堆纸牌数分别为 9 , 8 , 17 , 6 9,8,17,6 9,8,17,6

移动 3 3 3 次可达到目的:

  • 从第三堆取 4 4 4 张牌放到第四堆,此时每堆纸牌数分别为 9 , 8 , 13 , 10 9,8,13,10 9,8,13,10
  • 从第三堆取 3 3 3 张牌放到第二堆,此时每堆纸牌数分别为 9 , 11 , 10 , 10 9,11,10,10 9,11,10,10
  • 从第二堆取 1 1 1 张牌放到第一堆,此时每堆纸牌数分别为 10 , 10 , 10 , 10 10,10,10,10 10,10,10,10

输入格式

第一行共一个整数 N N N,表示纸牌堆数。
第二行共 N N N 个整数 A 1 , A 2 , ⋯   , A N A_1,A_2,\cdots,A_N A1,A2,,AN,表示每堆纸牌初始时的纸牌数。

输出格式

共一行,即所有堆均达到相等时的最少移动次数。

样例 #1

样例输入 #1

4
9 8 17 6

样例输出 #1

3

提示

对于 100 % 100\% 100% 的数据, 1 ≤ N ≤ 100 1 \le N \le 100 1N100 1 ≤ A i ≤ 10000 1 \le A_i \le 10000 1Ai10000

【题目来源】

NOIP 2002 提高组第一题

代码如下

#include<string.h>
#include<stdio.h>
#include<math.h>
#include <stdlib.h>

int n,a[101],mid,all,ans;
int main(){
	scanf("%d",&n);
	for(int i=1;i<=n;i++)
	scanf("%d",&a[i]),all+=a[i];
	all/=n;
	for(int i=1;i<=n;i++)if(a[i]-all)
	a[i+1]+=a[i]-all,ans++;
	printf("%d",ans);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值