高斯消元法求逆矩阵,即求解矩阵方程AX=IAX=IAX=I(其中AAA是n×nn \times nn×n的待逆矩阵,III是单位矩阵),涉及以下步骤:
- 前向消元:将A矩阵转成上三角矩阵
- 在第k步,对第k+1行到第n行的每一行进行消元操作,其中对每一行都需要相减n-k次
- 每次消元涉及n-k行,每行操作n-k次
- 总共需要进行n-1步
- 总操作量
∑k=1n−1(n−k)2=O(n3)\sum \limits_{\substack{k=1}}^{n-1}(n-k)^2=O(n^3)k=1∑n−1(n−k)2=O(n3)
- 回代求解:将A矩阵消成单位阵
- 回代过程对于每一步,都需要消减n-1行,但是每一行只相减一次,共有n-1步
- 总操作量
∑k=1n−1(n−k)=O(n2)\sum \limits_{\substack{k=1}}^{n-1}(n-k)=O(n^2)k=1∑n−1(n−k)=O(n2)
- 前向消元占主导,因此总的时间复杂度是O(n3)O(n^3)O(n3)
1852

被折叠的 条评论
为什么被折叠?



