高斯消元法求逆矩阵的时间复杂度

高斯消元法求逆矩阵,即求解矩阵方程AX=IAX=IAX=I(其中AAAn×nn \times nn×n的待逆矩阵,III是单位矩阵),涉及以下步骤:

  1. 前向消元:将A矩阵转成上三角矩阵
    • 在第k步,对第k+1行到第n行的每一行进行消元操作,其中对每一行都需要相减n-k次
    • 每次消元涉及n-k行,每行操作n-k次
    • 总共需要进行n-1步
    • 总操作量
      ∑k=1n−1(n−k)2=O(n3)\sum \limits_{\substack{k=1}}^{n-1}(n-k)^2=O(n^3)k=1n1(nk)2=O(n3)
  2. 回代求解:将A矩阵消成单位阵
    • 回代过程对于每一步,都需要消减n-1行,但是每一行只相减一次,共有n-1步
    • 总操作量
      ∑k=1n−1(n−k)=O(n2)\sum \limits_{\substack{k=1}}^{n-1}(n-k)=O(n^2)k=1n1(nk)=O(n2)
  3. 前向消元占主导,因此总的时间复杂度是O(n3)O(n^3)O(n3)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值