搭配飞行员

题目描述

飞行大队有若干个来自各地的驾驶员,专门驾驶一种型号的飞机,这种飞机每架有两个驾驶员,需一个正驾驶员和一个副驾驶员。由于种种原因,例如相互配合的问题,有些驾驶员不能在同一架飞机上飞行,问如何搭配驾驶员才能使出航的飞机最多。

因为驾驶工作分工严格,两个正驾驶员或两个副驾驶员都不能同机飞行。

输入格式

第一行,两个整数 nn 与 mm,表示共有 nn 个飞行员,其中有 mm 名飞行员是正驾驶员。
下面有若干行,每行有 22 个数字 aa、bb。表示正驾驶员 aa 和副驾驶员 bb 可以同机飞行。
注:正驾驶员的编号在前,即正驾驶员的编号小于副驾驶员的编号。

输出格式

仅一行一个整数,表示最大起飞的飞机数。

样例

InputcopyOutputcopy
10 5
1 7
2 6
2 10
3 7
4 8
5 9
4

数据范围与提示

2 \leq n \leq 1002≤n≤100

Dinic算法基本步骤:


 

#include <bits/stdc++.h>
using namespace std;
const int maxn=1e6+7;
const int maxm=2e6+7;
const int inf=0x3f3f3f3f;

struct Dinic {
    struct Edge {
        int next, f, to;
    } e[maxm];
    int head[maxn], dep[maxn], tol, ans;
    int cur[maxn];
    int src, sink, n;

    void add(int u, int v, int f) {
        tol++;
        e[tol].to = v;
        e[tol].next = head[u];
        e[tol].f = f;
        head[u] = tol;
        tol++;
        e[tol].to = u;
        e[tol].next = head[v];
        e[tol].f = 0;
        head[v] = tol;
    }

//制作level graph 
    bool bfs() {
        queue<int> q;
        memset(dep, -1, sizeof(dep));
        q.push(src);
        dep[src] = 0;//视情况而定 
        while (!q.empty()) {
            int now = q.front();
            q.pop();
            for (int i = head[now]; i; i = e[i].next) {
                if (dep[e[i].to] == -1 && e[i].f) {
                    dep[e[i].to] = dep[now] + 1;
                    if (e[i].to == sink)
                        return true;
                    q.push(e[i].to);
                }
            }
        }
        return false;
    }

    int dfs(int x, int maxx) {
        if (x == sink)
            return maxx;
        for (int &i = cur[x]; i; i = e[i].next) {
            if (dep[e[i].to] == dep[x] + 1 && e[i].f > 0) {
                int flow = dfs(e[i].to, min(maxx, e[i].f));
                if (flow) {
                    e[i].f -= flow;
                    e[i ^ 1].f += flow;
                    return flow;
                }
            }
        }
        return 0;
    }

    int dinic(int s, int t) {
        ans = 0;
        src = s;
        sink = t;
        while (bfs()) {
            for (int i = 0; i <= n; i++)
                cur[i] = head[i];
            while (int d = dfs(src, inf))
                ans += d;
        }
        return ans;
    }

    void init(int n) {
        this->n = n;
        memset(head, 0, sizeof(head));
        tol = 1;
    }
} G;
int n,m;
int main() {
    //freopen("1.txt", "r", stdin);
    scanf("%d%d", &n, &m);
    int u, v;
    int S = 0, T = n + 1;
    G.init(T);
    for (int i = 1; i <= m; i++) {
        G.add(S, i, 1);
    }
    for (int i = m + 1; i <= n; i++) {
        G.add(i, T, 1);
    }
    while (~scanf("%d%d", &u, &v)) {
        G.add(u, v, 1);
    }
    printf("%d\n", G.dinic(S, T));
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

linalw

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值