题目描述
飞行大队有若干个来自各地的驾驶员,专门驾驶一种型号的飞机,这种飞机每架有两个驾驶员,需一个正驾驶员和一个副驾驶员。由于种种原因,例如相互配合的问题,有些驾驶员不能在同一架飞机上飞行,问如何搭配驾驶员才能使出航的飞机最多。
因为驾驶工作分工严格,两个正驾驶员或两个副驾驶员都不能同机飞行。
输入格式
第一行,两个整数 nn 与 mm,表示共有 nn 个飞行员,其中有 mm 名飞行员是正驾驶员。
下面有若干行,每行有 22 个数字 aa、bb。表示正驾驶员 aa 和副驾驶员 bb 可以同机飞行。
注:正驾驶员的编号在前,即正驾驶员的编号小于副驾驶员的编号。
输出格式
仅一行一个整数,表示最大起飞的飞机数。
样例
Inputcopy | Outputcopy |
---|---|
10 5 1 7 2 6 2 10 3 7 4 8 5 9 | 4 |
数据范围与提示
2 \leq n \leq 1002≤n≤100
Dinic算法基本步骤:
#include <bits/stdc++.h>
using namespace std;
const int maxn=1e6+7;
const int maxm=2e6+7;
const int inf=0x3f3f3f3f;
struct Dinic {
struct Edge {
int next, f, to;
} e[maxm];
int head[maxn], dep[maxn], tol, ans;
int cur[maxn];
int src, sink, n;
void add(int u, int v, int f) {
tol++;
e[tol].to = v;
e[tol].next = head[u];
e[tol].f = f;
head[u] = tol;
tol++;
e[tol].to = u;
e[tol].next = head[v];
e[tol].f = 0;
head[v] = tol;
}
//制作level graph
bool bfs() {
queue<int> q;
memset(dep, -1, sizeof(dep));
q.push(src);
dep[src] = 0;//视情况而定
while (!q.empty()) {
int now = q.front();
q.pop();
for (int i = head[now]; i; i = e[i].next) {
if (dep[e[i].to] == -1 && e[i].f) {
dep[e[i].to] = dep[now] + 1;
if (e[i].to == sink)
return true;
q.push(e[i].to);
}
}
}
return false;
}
int dfs(int x, int maxx) {
if (x == sink)
return maxx;
for (int &i = cur[x]; i; i = e[i].next) {
if (dep[e[i].to] == dep[x] + 1 && e[i].f > 0) {
int flow = dfs(e[i].to, min(maxx, e[i].f));
if (flow) {
e[i].f -= flow;
e[i ^ 1].f += flow;
return flow;
}
}
}
return 0;
}
int dinic(int s, int t) {
ans = 0;
src = s;
sink = t;
while (bfs()) {
for (int i = 0; i <= n; i++)
cur[i] = head[i];
while (int d = dfs(src, inf))
ans += d;
}
return ans;
}
void init(int n) {
this->n = n;
memset(head, 0, sizeof(head));
tol = 1;
}
} G;
int n,m;
int main() {
//freopen("1.txt", "r", stdin);
scanf("%d%d", &n, &m);
int u, v;
int S = 0, T = n + 1;
G.init(T);
for (int i = 1; i <= m; i++) {
G.add(S, i, 1);
}
for (int i = m + 1; i <= n; i++) {
G.add(i, T, 1);
}
while (~scanf("%d%d", &u, &v)) {
G.add(u, v, 1);
}
printf("%d\n", G.dinic(S, T));
return 0;
}