咕噜咕噜....
码龄3年
关注
提问 私信
  • 博客:9,943
    9,943
    总访问量
  • 9
    原创
  • 1,245,623
    排名
  • 37
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:贵州省
  • 加入CSDN时间: 2021-10-05
博客简介:

weixin_62627529的博客

查看详细资料
个人成就
  • 获得44次点赞
  • 内容获得5次评论
  • 获得123次收藏
创作历程
  • 9篇
    2023年
成就勋章
创作活动更多

新星杯·14天创作挑战营·第9期

这是一个以写作博客为目的的创作活动,旨在鼓励大学生博主们挖掘自己的创作潜能,展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴,那么,快来参加吧!我们一起发掘写作的魅力,书写出属于我们的故事。我们诚挚邀请你们参加为期14天的创作挑战赛! 注: 1、参赛者可以进入活动群进行交流、分享创作心得,互相鼓励与支持(开卷),答疑及活动群请见 https://bbs.csdn.net/topics/619626357 2、文章质量分查询:https://www.csdn.net/qc

475人参与 去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

【机器学习】 主成分分析

主成分分析作为一种简便的数据降维方法,其应用还是十分广泛的,例如在基因组学、细胞学等生物学领域,或是其它学科,都可以找到主成分分析的实际应用。优点仅仅需要以方差衡量信息量,不受数据集以外的因素影响。各主成分之间正交,可消除原始数据成分间的相互影响的因素。计算方法简单,主要运算是特征值求解,易于实现。缺点主成分各个特征维度的含义具有一定的模糊性,不如原始样本特征的解释性强。方差小的非主成分也可能含有对样本差异的重要信息,因降维丢弃可能对后续数据处理有影响。
原创
发布博客 2023.12.22 ·
884 阅读 ·
20 点赞 ·
0 评论 ·
22 收藏

【机器学习】支持向量机 SVM

可用于线性/非线性分类,也可以用于回归,泛化错误率低,也就是说具有良好的学习能力,且学到的结果具有很好的推广性。可以解决小样本情况下的机器学习问题,可以解决高维问题,可以避免神经网络结构选择和局部极小点问题。SVM是最好的现成的分类器,现成是指不加修改可直接使用。并且能够得到较低的错误率,SVM可以对训练集之外的数据点做很好的分类决策。对参数调节和和函数的选择敏感。适用的数据类型:数值型和标称型数据。
原创
发布博客 2023.12.18 ·
925 阅读 ·
17 点赞 ·
0 评论 ·
26 收藏

【机器学习】 Logistic 回归算法

Logistics回归算法是一种简单但强大的分类算法,它在实际应用中被广泛使用。除了二元分类和多元分类之外,逻辑回归也可以用于解决其他问题,例如异常检测、推荐系统、文本分类、图像分类等。然而,对于复杂的非线性问题,逻辑回归算法的表现可能并不理想,需要考虑其他更加高级和复杂的算法来解决。
原创
发布博客 2023.12.03 ·
171 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

【机器学习】分类与回归

回归和分类是机器学习中两种常见的任务类型,用于对数据进行预测和分类,并且都是监督学习。
原创
发布博客 2023.11.27 ·
1494 阅读 ·
4 点赞 ·
1 评论 ·
9 收藏

【机器学习】 朴素贝叶斯算法

在本次的实验中学习了贝叶斯算法,贝叶斯算法不同于线性模型,其基本思想是根据先验概率和条件概率推断出后验概率从而进行分类。其优点在于算法简单,运算速度快,在处理大规模数据时具有一定优势,在分类过程的时间与空间复杂度都比较小。朴素贝叶斯模型是一种非常经典的机器学习模型,主要基于贝叶斯公式,在应用过程中会把数据集中的特征看成是相互独立的,而不需考虑特征间的关联关系,因此运算速度较快。相比于其他经典的机器学习模型,朴素贝叶斯模型的泛化能力稍弱,不过当样本及特征的数量增加时,其预测效果也是不错的。
原创
发布博客 2023.11.12 ·
221 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

【机器学习】 决策树

决策树是一种监督学习算法,广泛应用于分类和回归问题。它通过将数据集的特征空间划分为不同的区域来构建一个树状模型,每个区域对应于一个决策路径。决策树通过选择最佳的特征来进行决策,常见的特征选择方法有信息增益、基尼系数等。在实验过程中,常常会遇到过拟合问题,通过剪枝方法修剪决策树的叶子节点或合并相邻的叶子节点来减小模型复杂度。在实践中,对决策树进行适当的调参和剪枝操作非常重要,以获得更好的泛化能力和预测性能。
原创
发布博客 2023.11.05 ·
142 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

【机器学习】 模型评估

机器学习的模型评估能够帮助我们判断模型的优劣、调整模型参数,但是模型评估是一个非常复杂和耗时的过程,需要综合考虑多方面的因素。结合具体的问题选择合适的方法和指标,不断的调整和优化模型来提高性能。TN+FP%20+
原创
发布博客 2023.10.21 ·
224 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

【机器学习】KNN算法对鸢尾花进行分类

K最近邻(K-Nearest Neighbors,KNN)算法是一种常用的分类和回归算法。对于分类问题,KNN算法的基本思想是找出离待预测样本最近的K个训练样本,然后根据这K个样本的标签,通过投票或加权投票的方式来确定待预测样本的类别。iris数据集的中文名是安德森鸢尾花卉数据集,英文全称是Anderson’s Iris data set。iris包含150个样本,对应数据集的每行数据。每行数据包含每个样本的四个特征和样本的类别信息,所以iris数据集是一个150行5列的二维表。
原创
发布博客 2023.10.09 ·
4699 阅读 ·
3 点赞 ·
2 评论 ·
59 收藏

VSCode + Anaconda安装教程

进入VSCode官方的下载页,根据系统需求选择相对应的下载地址。
原创
发布博客 2023.09.16 ·
1142 阅读 ·
0 点赞 ·
1 评论 ·
5 收藏