3158.求出出现两次数字的XOR值
给你一个数组 nums
,数组中的数字 要么 出现一次,要么 出现两次。
请你返回数组中所有出现两次数字的按位 XOR
值,如果没有数字出现过两次,返回 0 。
示例 1:
输入:nums = [1,2,1,3]
输出:1
解释:
nums
中唯一出现过两次的数字是 1 。
示例 2:
输入:nums = [1,2,3]
输出:0
解释:
nums
中没有数字出现两次。
示例 3:
输入:nums = [1,2,2,1]
输出:3
解释:
数字 1 和 2 出现过两次。1 XOR 2 == 3
。
提示:
1 <= nums.length <= 50
1 <= nums[i] <= 50
nums
中每个数字要么出现过一次,要么出现过两次。
这个题里面的数字在1-50之间,所以可以直接计数排序,如果count[i]==2,那么ans^i
class Solution {
public:
int duplicateNumbersXOR(vector<int>& nums) {
int n=nums.size();
int count[51]={0};
int ans=0;
for(int i=0;i<n;i++){
count[nums[i]]++;
if(count[nums[i]]==2) ans=ans^nums[i];
}
return ans;
}
};
3159.查询数组中元素的出现位置
给你一个整数数组 nums
,一个整数数组 queries
和一个整数 x
。
对于每个查询 queries[i]
,你需要找到 nums
中第 queries[i]
个 x
的位置,并返回它的下标。如果数组中 x
的出现次数少于 queries[i]
,该查询的答案为 -1 。
请你返回一个整数数组 answer
,包含所有查询的答案。
示例 1:
输入:nums = [1,3,1,7], queries = [1,3,2,4], x = 1
输出:[0,-1,2,-1]
解释:
- 第 1 个查询,第一个 1 出现在下标 0 处。
- 第 2 个查询,
nums
中只有两个 1 ,所以答案为 -1 。 - 第 3 个查询,第二个 1 出现在下标 2 处。
- 第 4 个查询,
nums
中只有两个 1 ,所以答案为 -1 。
示例 2:
输入:nums = [1,2,3], queries = [10], x = 5
输出:[-1]
解释:
- 第 1 个查询,
nums
中没有 5 ,所以答案为 -1 。
提示:
1 <= nums.length, queries.length <= 105
1 <= queries[i] <= 105
1 <= nums[i], x <= 104
这个题只要O(n)遍历数组,将同样的nums元素对应的nums数组的位置放入
unordered_map< int,vector<int> >positions
之后遍历queries数组,找到数字x在nums数组里第queries[i]个的位置。
如果没有,就返回-1
class Solution {
public:
vector<int> occurrencesOfElement(vector<int>& nums, vector<int>& queries, int x) {
unordered_map<int, vector<int>> positions; // 用于存储数字 x 在 nums 中的位置
for (int i = 0; i < nums.size(); i++) {
positions[nums[i]].push_back(i);
}
vector<int> answer;
for (int query : queries) {
if (positions.find(x) == positions.end() || positions[x].size() < query) {
answer.push_back(-1);
} else {
answer.push_back(positions[x][query - 1]);
}
}
return answer;
}
};
不过其实可以不必记录所有的元素的,只需要记录x在nums数组的位置就行
3160.所有球里面不同颜色的数目
给你一个整数 limit
和一个大小为 n x 2
的二维数组 queries
。
总共有 limit + 1
个球,每个球的编号为 [0, limit]
中一个 互不相同 的数字。一开始,所有球都没有颜色。queries
中每次操作的格式为 [x, y]
,你需要将球 x
染上颜色 y
。每次操作之后,你需要求出所有球中 不同 颜色的数目。
请你返回一个长度为 n
的数组 result
,其中 result[i]
是第 i
次操作以后不同颜色的数目。
注意 ,没有染色的球不算作一种颜色。
示例 1:
输入:limit = 4, queries = [[1,4],[2,5],[1,3],[3,4]]
输出:[1,2,2,3]
解释:
- 操作 0 后,球 1 颜色为 4 。
- 操作 1 后,球 1 颜色为 4 ,球 2 颜色为 5 。
- 操作 2 后,球 1 颜色为 3 ,球 2 颜色为 5 。
- 操作 3 后,球 1 颜色为 3 ,球 2 颜色为 5 ,球 3 颜色为 4 。
示例 2:
输入:limit = 4, queries = [[0,1],[1,2],[2,2],[3,4],[4,5]]
输出:[1,2,2,3,4]
解释:
- 操作 0 后,球 0 颜色为 1 。
- 操作 1 后,球 0 颜色为 1 ,球 1 颜色为 2 。
- 操作 2 后,球 0 颜色为 1 ,球 1 和 2 颜色为 2 。
- 操作 3 后,球 0 颜色为 1 ,球 1 和 2 颜色为 2 ,球 3 颜色为 4 。
- 操作 4 后,球 0 颜色为 1 ,球 1 和 2 颜色为 2 ,球 3 颜色为 4 ,球 4 颜色为 5 。
提示:
1 <= limit <= 109
1 <= n == queries.length <= 105
queries[i].length == 2
0 <= queries[i][0] <= limit
1 <= queries[i][1] <= 109
class Solution {
public:
vector<int> queryResults(int limit, vector<vector<int>>& queries) {
unordered_map<int, int> color; // 用来记录球对应的颜色
unordered_map<int, int> colorsCount; // 用来记录每种颜色的数量
vector<int> result;
int num = 0;
for (int i = 0; i < queries.size(); i++) {
int ball = queries[i][0];
int newColor = queries[i][1];
if (color.find(ball) == color.end()) {
// 新的球,颜色+1
colorsCount[newColor]++;
if(colorsCount[newColor]==1) num++;
} else {
int oldColor = color[ball];
if (colorsCount[oldColor] == 1) {
// 如果原来的颜色只有一个球,颜色种类-1
num--;
colorsCount[oldColor]--;
} else {
colorsCount[oldColor]--;
}
colorsCount[newColor]++;
if (colorsCount[newColor] == 1) { // 如果新颜色原本不存在
num++;
}
}
color[ball] = newColor;
result.push_back(num);
}
return result;
}
};
这个题有点麻烦,但是写起来感觉还好
unordered_map<int, int> color; // 用来记录球对应的颜色
unordered_map<int, int> colorsCount; // 用来记录每种颜色的数量
就好了
3161.物块放置查询
有一条无限长的数轴,原点在 0 处,沿着 x 轴 正 方向无限延伸。
给你一个二维数组 queries
,它包含两种操作:
- 操作类型 1 :
queries[i] = [1, x]
。在距离原点x
处建一个障碍物。数据保证当操作执行的时候,位置x
处 没有 任何障碍物。 - 操作类型 2 :
queries[i] = [2, x, sz]
。判断在数轴范围[0, x]
内是否可以放置一个长度为sz
的物块,这个物块需要 完全 放置在范围[0, x]
内。如果物块与任何障碍物有重合,那么这个物块 不能 被放置,但物块可以与障碍物刚好接触。注意,你只是进行查询,并 不是 真的放置这个物块。每个查询都是相互独立的。
请你返回一个 boolean 数组results
,如果第 i
个操作类型 2 的操作你可以放置物块,那么 results[i]
为 true
,否则为 false
。
示例 1:
输入:queries = [[1,2],[2,3,3],[2,3,1],[2,2,2]]
输出:[false,true,true]
解释:
查询 0 ,在 x = 2
处放置一个障碍物。在 x = 3
之前任何大小不超过 2 的物块都可以被放置。
示例 2:
输入:queries = [[1,7],[2,7,6],[1,2],[2,7,5],[2,7,6]]
输出:[true,true,false]
解释:
- 查询 0 在
x = 7
处放置一个障碍物。在x = 7
之前任何大小不超过 7 的物块都可以被放置。 - 查询 2 在
x = 2
处放置一个障碍物。现在,在x = 7
之前任何大小不超过 5 的物块可以被放置,x = 2
之前任何大小不超过 2 的物块可以被放置。
提示:
1 <= queries.length <= 15 * 104
2 <= queries[i].length <= 3
1 <= queries[i][0] <= 2
1 <= x, sz <= min(5 * 104, 3 * queries.length)
- 输入保证操作 1 中,
x
处不会有障碍物。 - 输入保证至少有一个操作类型 2 。
这个题当时比赛时间不够了,就没写
我看灵茶直播,说好像要线段树。。。没学过。
先去浅学一下。