序:本文将记录一些常见的证明题思考方向;文中提到的因题而异指的是搭配相应知识点:如看到积分想到分部,看到不可导想到费马等等
1.小于0/大于0的妙用
构造不等式,看到小于0应该考虑构造怎么样的不等式,构造出来的不等式应该因题而异,切忌背死套路,不然单纯给个单调,拿头去找f(x1)>f(x2)啊,而且有时候给单调也不一定就是要构造那样f(x1)>f(x2)的不等式也许会比这个稍微复杂一点。
2.积分的大杀招:分部
分部当然不会一眼看出来,要能灵敏的提炼出一阶导信息,如用泰勒等
3.1/2,1/3等数字从哪里来?
1/2常见的想法那就是从平方和差公式得来的不等式;泰勒,构造两个相同的部分;加减方程;
1/3则不常见,这里要多加小心,像这种奇怪的分数大多从(x-k)^n次方积分而来
4.数列与级数,分不开的彼此
级数证明和中值定理证明类似,最核心的能力就是构造能力,下面介绍常见的构造方向:
出现递推式:(一般递推式)不断迭代然后得到不等式利用比较判别法审敛;(差式递推式),不断迭代出等式,然后两边求级数
出现n,1/n:微分方程
出现f(x)=级数的方程,设法将fx分子移动到级数变成x^n+1等
出现无穷小量求极限:判断是否收敛(有界)
5.曲线积分化简之二重积分也可以看成曲线积分
1.极坐标本质为变化的圆:动曲线---》格林公式
2.曲线积分常见的化简就是对dx,dy进行操作,这要求寻找到合适函数,而极坐标就是天然的函数(参数方程)
3.重积分--》累次积分--》单独看其中一个的累次积分--》曲线积分--》格林公式
6.方程无法处理?
两边同乘一个因子,同乘x可以使级数移动,出现需要的an+1,另外还有同乘e-x等等