双深度学习模型实现结直肠癌检测
本文所涉及所有资源均在传知代码平台可获取
文章目录
1.研究背景和意义
1.1背景:
结直肠癌是一种全球范围内常见的恶性肿瘤,其发病率和死亡率呈上升趋势。
早期发现对提高治疗效果和患者生存率至关重要,但传统诊断方法存在主观性和时间成本高的问题。
结直肠癌组织切片图像具有复杂结构,需要精确的图像处理技术来辅助诊断。
1.2意义:
开发基于深度学习的结直肠癌识别系统,旨在提高诊断效率,减少传统方法的局限性。
利用深度学习技术自动分类结直肠癌图像,为医生提供可靠的辅助工具,提升临床决策质量。
该系统通过自动化图像识别,有助于改善患者的治疗结果,提高生存率,同时为医学图像处理和深度学习在肿瘤诊断领域的应用提供新思路和实践基础。