基于知识引导提示的因果概念提取(论文复现)

基于知识引导提示的因果概念提取(论文复现)

本文所涉及所有资源均在传知代码平台可获取

文章目录

    • 基于知识引导提示的因果概念提取(论文复现)
      • 论文概述
      • 论文方法
      • 提示构造器
      • 获取典型概念集
      • 聚类典型概念
      • 构建训练数据
      • 训练主题分类器
      • 概念提取器
      • 输入构造
      • 指针网络
      • 置信度评分
      • 训练损失
      • 实验部分
      • 数据集
      • 实验步骤
      • 配置环境
      • 核心代码

论文概述

预训练语言模型(PLMs)在概念提取中往往依赖于文本中的共现关联,而不是实际的因果关系,导致提取结果存在偏差和低精确度。为了解决这个问题,本文提出了通过知识引导提示来干预PLM的概念提取过程。这个提示利用现有知识图谱中的知识,帮助PLM聚焦于相关概念,减少对虚假共现的依赖,从而提高提取精度。实验结果表明,这种方法有效减少了偏差,显著提升了概念提取的性能。

论文方法

在这里插入图片描述

本文提出了一个名为KPCE的概念提取(CE)框架

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wei_shuo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值