LeetCode题练习与总结:不同路径Ⅱ--63

216 篇文章 0 订阅
132 篇文章 0 订阅
本文介绍了如何使用动态规划解决机器人在含有障碍物的网格中从左上角到右下角的不同路径数量问题。通过状态转移方程和二维数组dp,计算每一步的路径选择,同时处理了边界条件和空间复杂度优化。
摘要由CSDN通过智能技术生成

一、题目描述

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

网格中的障碍物和空位置分别用 10 来表示。

示例 1:

输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
输出:2
解释:3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:
1. 向右 -> 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右 -> 向右

示例 2:

输入:obstacleGrid = [[0,1],[0,0]]
输出:1

提示:

  • m == obstacleGrid.length
  • n == obstacleGrid[i].length
  • 1 <= m, n <= 100
  • obstacleGrid[i][j]01

二、解题思路

  1. 初始化:dp[0][0]是起始点,如果obstacleGrid[0][0]为0,则dp[0][0] = 1,否则为0。表示没有路径可以到达起点上存在障碍物的网格。
  2. 状态转移方程:对于dp[i][j],它只能由dp[i-1][j](从左边来)和dp[i][j-1](从上边来)转移而来。如果obstacleGrid[i][j]为1,则表示该位置有障碍物,dp[i][j]为0。否则,dp[i][j] = dp[i-1][j] + dp[i][j-1]
  3. 遍历:从左到右,从上到下遍历obstacleGrid,根据状态转移方程更新dp数组。
  4. 结果:最后dp[m-1][n-1]即为从左上角到右下角的不同路径数量。

三、具体代码

class Solution {
    public int uniquePathsWithObstacles(int[][] obstacleGrid) {
        // 获取网格的行数和列数
        int m = obstacleGrid.length;
        int n = obstacleGrid[0].length;

        // 初始化dp数组,所有元素初始为0
        int[][] dp = new int[m][n];

        // 如果起点有障碍物,则直接返回0
        if (obstacleGrid[0][0] == 1) {
            return 0;
        }

        // 初始化起点为1,表示从起点出发至少有一条路径
        dp[0][0] = 1;

        // 遍历网格
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                // 如果当前位置有障碍物,则跳过
                if (obstacleGrid[i][j] == 1) {
                    dp[i][j] = 0;
                    continue;
                }
                // 从左边来
                if (i > 0) {
                    dp[i][j] += dp[i-1][j];
                }
                // 从上边来
                if (j > 0) {
                    dp[i][j] += dp[i][j-1];
                }
            }
        }

        // 返回到达右下角的路径数量
        return dp[m-1][n-1];
    }
}

四、时间复杂度和空间复杂度

1. 时间复杂度
  • 外层循环遍历每一行,内层循环遍历每一列,所以总共的循环次数是 m * n,其中 m 是网格的行数,n 是网格的列数。
  • 在每次循环中,代码主要进行的是常数时间的操作,包括数组的读写操作和简单的加法运算。
  • 由于没有嵌套循环或递归调用,且没有额外的复杂操作,所以时间复杂度是 O(m * n)。
2. 空间复杂度
  • 空间复杂度主要由创建的二维数组 dp 决定,其大小为 m * n。
  • dp 数组用于存储到达每个位置的路径数量,这是解决这个问题所需的额外空间。
  • 代码中没有使用其他额外的数据结构或变量,所以空间复杂度是 O(m * n)。

五、总结知识点

1. 二维数组的使用:代码中使用了二维数组 dp 来存储从起点到每个位置的路径数量。这是动态规划问题中常见的数据结构,用于保存问题的子解。

2. 动态规划(Dynamic Programming):这是一个典型的动态规划问题。动态规划是一种通过将问题分解为重叠的子问题,并存储子问题的解(通常是在一个表格中),从而避免重复计算子问题的解的优化技巧。

  • 状态定义:dp[i][j] 表示从左上角到位置 (i, j) 的不同路径数量。
  • 状态转移方程:dp[i][j] = dp[i-1][j] + dp[i][j-1]obstacleGrid[i][j] 为 0 时,表示没有障碍物,可以从上方或左方到达当前位置。
  • 初始化:dp[0][0] 为 1,因为起点没有障碍物,且只有一条路径可以到达起点。

3. 条件判断:代码中使用了条件判断来处理障碍物的情况。如果当前位置有障碍物(obstacleGrid[i][j] == 1),则 dp[i][j] 被设置为 0,表示没有路径可以到达该位置。

4. 循环控制:代码使用了两层嵌套的 for 循环来遍历整个网格。外层循环遍历行,内层循环遍历列。这种循环结构适用于处理网格、矩阵等二维结构的问题。

5. 空间复杂度优化:尽管代码中没有直接体现,但在实际应用中,可以考虑使用一维数组来优化空间复杂度,因为 dp[i][j] 只依赖于 dp[i-1][j]dp[i][j-1],不需要整个二维数组 dp

  • 可以通过仅使用两行空间(一个用于当前行,一个用于前一行)来更新路径数量,从而将空间复杂度从 O(m * n) 降低到 O(min(m, n))。

6. 边界条件处理:代码在处理动态规划问题时,特别注意了边界条件。在这个问题中,起点 dp[0][0] 是一个特殊的边界条件,如果起点有障碍物,则没有路径可以到达,直接返回 0。

以上就是解决这个问题的详细步骤,希望能够为各位提供启发和帮助。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一直学习永不止步

谢谢您的鼓励,我会再接再厉的!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值