LeetCode题练习与总结:寻找旋转排序数组中的最小值--153

319 篇文章 0 订阅
189 篇文章 0 订阅

一、题目描述

已知一个长度为 n 的数组,预先按照升序排列,经由 1 到 n 次 旋转 后,得到输入数组。例如,原数组 nums = [0,1,2,4,5,6,7] 在变化后可能得到:

  • 若旋转 4 次,则可以得到 [4,5,6,7,0,1,2]
  • 若旋转 7 次,则可以得到 [0,1,2,4,5,6,7]

注意,数组 [a[0], a[1], a[2], ..., a[n-1]] 旋转一次 的结果为数组 [a[n-1], a[0], a[1], a[2], ..., a[n-2]] 。

给你一个元素值 互不相同 的数组 nums ,它原来是一个升序排列的数组,并按上述情形进行了多次旋转。请你找出并返回数组中的 最小元素 。

你必须设计一个时间复杂度为 O(log n) 的算法解决此问题。

示例 1:

输入:nums = [3,4,5,1,2]
输出:1
解释:原数组为 [1,2,3,4,5] ,旋转 3 次得到输入数组。

示例 2:

输入:nums = [4,5,6,7,0,1,2]
输出:0
解释:原数组为 [0,1,2,4,5,6,7] ,旋转 3 次得到输入数组。

示例 3:

输入:nums = [11,13,15,17]
输出:11
解释:原数组为 [11,13,15,17] ,旋转 4 次得到输入数组。

提示:

  • n == nums.length
  • 1 <= n <= 5000
  • -5000 <= nums[i] <= 5000
  • nums 中的所有整数 互不相同
  • nums 原来是一个升序排序的数组,并进行了 1 至 n 次旋转

二、解题思路

这个问题是典型的二分查找的变种问题。由于原数组是升序排列的,即使经过旋转,数组也被分成了两个有序的部分。最小值就是这两个部分的分界点。

以下是解决这个问题的步骤:

1. 初始化两个指针,left指向数组的起始位置,right指向数组的末尾。

2. 进行二分查找,计算中间位置mid

3. 检查mid位置的值是否是最小值,或者通过比较midright位置的值来确定最小值是在左半部分还是右半部分。

  • 如果nums[mid] > nums[right],说明最小值在mid的右侧,设置left = mid + 1
  • 否则,最小值在mid的左侧或就是mid,设置right = mid

4. 当left等于right时,找到了最小值,返回nums[left]nums[right]

三、具体代码

class Solution {
    public int findMin(int[] nums) {
        int left = 0, right = nums.length - 1;
        while (left < right) {
            int mid = left + (right - left) / 2;
            if (nums[mid] > nums[right]) {
                left = mid + 1;
            } else {
                right = mid;
            }
        }
        return nums[left];
    }
}

四、时间复杂度和空间复杂度

1. 时间复杂度
  • 我们使用了一个while循环,该循环的每次迭代都会将搜索区间减半。
  • 在每次迭代中,我们只做常数时间的工作,即计算mid、比较和赋值。
  • 因此,循环会运行log n次,其中n是数组的长度。
  • 综上,时间复杂度是O(log n)。
2. 空间复杂度
  • 该算法只使用了几个变量(left, right, mid),不管输入数组的大小如何,所使用的额外空间都保持不变。
  • 因此,空间复杂度是O(1),即常数空间复杂度。

五、总结知识点

1. 二分查找(Binary Search):

  • 二分查找是一种高效的查找算法,它将查找区间分成两半,每次比较中间元素与目标值,根据比较结果选择左半区间或右半区间继续查找,直到找到目标值或区间为空。
  • 在这个问题中,二分查找被用于找到旋转数组中的最小值,即使数组被旋转,我们也可以通过比较中间元素和最右侧元素来确定最小值是在左半部分还是右半部分。

2. 循环(Loop):

  • 使用了一个while循环来实现二分查找。循环的条件是左指针小于右指针,这表示查找区间非空。

3. 整数运算(Integer Operations):

  • 计算中间位置mid时使用了整数除法和加法。为了避免整数溢出,使用了(left + (right - left) / 2)而不是(left + right) / 2

4. 数组操作(Array Operations):

  • 通过索引访问数组元素,比较数组中不同位置的值。

5. 递归与迭代(Recursion and Iteration):

  • 虽然这段代码使用的是迭代方法,但二分查找也可以用递归方式实现。在这个问题中,迭代是更常见和更高效的实现方式。

6. 算法设计技巧(Algorithm Design Techniques):

  • 利用数组的局部有序性质来减少查找范围,这是分治策略的一个例子。

以上就是解决这个问题的详细步骤,希望能够为各位提供启发和帮助。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一直学习永不止步

谢谢您的鼓励,我会再接再厉的!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值