一、题目描述
已知一个长度为 n
的数组,预先按照升序排列,经由 1
到 n
次 旋转 后,得到输入数组。例如,原数组 nums = [0,1,2,4,5,6,7]
在变化后可能得到:
- 若旋转
4
次,则可以得到[4,5,6,7,0,1,2]
- 若旋转
7
次,则可以得到[0,1,2,4,5,6,7]
注意,数组 [a[0], a[1], a[2], ..., a[n-1]]
旋转一次 的结果为数组 [a[n-1], a[0], a[1], a[2], ..., a[n-2]]
。
给你一个元素值 互不相同 的数组 nums
,它原来是一个升序排列的数组,并按上述情形进行了多次旋转。请你找出并返回数组中的 最小元素 。
你必须设计一个时间复杂度为 O(log n)
的算法解决此问题。
示例 1:
输入:nums = [3,4,5,1,2] 输出:1 解释:原数组为 [1,2,3,4,5] ,旋转 3 次得到输入数组。
示例 2:
输入:nums = [4,5,6,7,0,1,2] 输出:0 解释:原数组为 [0,1,2,4,5,6,7] ,旋转 3 次得到输入数组。
示例 3:
输入:nums = [11,13,15,17] 输出:11 解释:原数组为 [11,13,15,17] ,旋转 4 次得到输入数组。
提示:
n == nums.length
1 <= n <= 5000
-5000 <= nums[i] <= 5000
nums
中的所有整数 互不相同nums
原来是一个升序排序的数组,并进行了1
至n
次旋转
二、解题思路
这个问题是典型的二分查找的变种问题。由于原数组是升序排列的,即使经过旋转,数组也被分成了两个有序的部分。最小值就是这两个部分的分界点。
以下是解决这个问题的步骤:
1. 初始化两个指针,left
指向数组的起始位置,right
指向数组的末尾。
2. 进行二分查找,计算中间位置mid
。
3. 检查mid
位置的值是否是最小值,或者通过比较mid
与right
位置的值来确定最小值是在左半部分还是右半部分。
- 如果
nums[mid] > nums[right]
,说明最小值在mid
的右侧,设置left = mid + 1
。 - 否则,最小值在
mid
的左侧或就是mid
,设置right = mid
。
4. 当left
等于right
时,找到了最小值,返回nums[left]
或nums[right]
。
三、具体代码
class Solution {
public int findMin(int[] nums) {
int left = 0, right = nums.length - 1;
while (left < right) {
int mid = left + (right - left) / 2;
if (nums[mid] > nums[right]) {
left = mid + 1;
} else {
right = mid;
}
}
return nums[left];
}
}
四、时间复杂度和空间复杂度
1. 时间复杂度
- 我们使用了一个while循环,该循环的每次迭代都会将搜索区间减半。
- 在每次迭代中,我们只做常数时间的工作,即计算mid、比较和赋值。
- 因此,循环会运行log n次,其中n是数组的长度。
- 综上,时间复杂度是O(log n)。
2. 空间复杂度
- 该算法只使用了几个变量(left, right, mid),不管输入数组的大小如何,所使用的额外空间都保持不变。
- 因此,空间复杂度是O(1),即常数空间复杂度。
五、总结知识点
1. 二分查找(Binary Search):
- 二分查找是一种高效的查找算法,它将查找区间分成两半,每次比较中间元素与目标值,根据比较结果选择左半区间或右半区间继续查找,直到找到目标值或区间为空。
- 在这个问题中,二分查找被用于找到旋转数组中的最小值,即使数组被旋转,我们也可以通过比较中间元素和最右侧元素来确定最小值是在左半部分还是右半部分。
2. 循环(Loop):
- 使用了一个while循环来实现二分查找。循环的条件是左指针小于右指针,这表示查找区间非空。
3. 整数运算(Integer Operations):
- 计算中间位置
mid
时使用了整数除法和加法。为了避免整数溢出,使用了(left + (right - left) / 2)
而不是(left + right) / 2
。
4. 数组操作(Array Operations):
- 通过索引访问数组元素,比较数组中不同位置的值。
5. 递归与迭代(Recursion and Iteration):
- 虽然这段代码使用的是迭代方法,但二分查找也可以用递归方式实现。在这个问题中,迭代是更常见和更高效的实现方式。
6. 算法设计技巧(Algorithm Design Techniques):
- 利用数组的局部有序性质来减少查找范围,这是分治策略的一个例子。
以上就是解决这个问题的详细步骤,希望能够为各位提供启发和帮助。