- 博客(1)
- 收藏
- 关注
原创 使用奇异值分解(SVD)压缩图片(python实现)
对3个图层分别进行奇异值分解,可以选取前k个奇异值进行近似表达(每个矩阵的奇异值是唯一的,矩阵大小跟奇异值数量有关),最后合并3个图层就可以以较少的数据表示原图片(也就是使用多于原图片奇异值数量的奇异值可能会使图片更大)。上面的代码显示的图片就是SVD对图片压缩的影响,我们可以看到低奇异值压缩得到的图片会有一些花斑,这些花斑是因为图片的像素亮度差较大造成的,如果我们对图像像素的亮度进行归一化,我们就会得到不错的显示效果。下面是加入归一化的代码。亮的地方变暗,暗的地方变亮。
2023-10-22 21:52:22 3187 4
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人