1时间复杂度的概念:
时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一 个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知 道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个 分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法 的时间复杂度。
::时间复杂度是计算影响最大的一项,是估算。
例如
// 请计算一下Func1中++count语句总共执行了多少次?
void Func1(int N)
{
int count = 0;
for (int i = 0; i < N ; ++ i)
{
for (int j = 0; j < N ; ++ j)
{
++count;
}
}
for (int k = 0; k < 2 * N ; ++ k)
{
++count;
}
int M = 10;
while (M--)
{
++count;
}
printf("%d\n", count);
}
总次数::n*n+2*n+10;
实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要
大概执行次数,那么这
里我们使用大
O
的渐进表示法。
大O的渐近表示法
那么什么是大O的渐近表示法呢?
1
、用常数
1
取代运行时间中的所有加法常数。
2
、在修改后的运行次数函数中,只保留最高阶项。
3
、如果最高阶项存在且不是
1
,则去除与这个项目相乘的常数。得到的结果就是大
O
阶。
使用大
O
的渐进表示法以后,
Func1
的时间复杂度为:N*N;
冒泡排序
示例代码
int main()
{
int arr[10] = { 2,6,5,8,43,7,5,8,3,1 };
//BubbleSort(p);
int n=sizeof(arr)/sizeof(arr[0]);
for (int i = 0; i<n; i++)
{
for (int j = 0; j < n - i - 1; j++)
{
if (arr[j] > arr[j + 1])
{
int temp;
temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
}
}
}
for (int i = 0; i < n; i++)
{
cout << arr[i]<<endl;
}
return 0;
}
冒泡排序原理:
每次与相邻的一个数字比较大小,当前一个的数字比后面的大时,交换数字
排序特点
例:2 3 1 6 5 9 8
第一趟:
最后表现得形式是6
第二趟
1 2 3 5 6 8 9
第三趟之后得到得都是相同得,最然说这个例子比较特殊和简单。但是原理就是相邻的两个数字比较大小,前大就换。