1. 数据类型介绍
char \\字符数据类型
short \\短整型
int \\整型
long \\长整型
long long \\更长的整型
float \\单精度浮点数
double \\双精度浮点数
类型的意义:不同类型开辟空间大小不同,大小决定适用范围
整型类型
char
unsigned char
signed char
short
unsigned short
signed short
int
unsigned int
signed int
long
unsigned long
signed long
浮点数类型
float
double
构造类型
数组类型
结构体类型 struct
枚举类型 enum
联合类型 union
指针类型
int *pi;
char *pc;
float *pf;
void *pv;
空类型
void表示空类型(无类型)
通常应用于函数的返回类型、函数的参数、指针类型
2. 整形在内存中的存储
2.1 原码、反码、补码
计算机中的整数有三种2进制表示方法,即原码、反码和补码。
详见前面文章初识C语言——源码、反码、补码
2.2 大小端介绍
大端存储,是指数据的低位保存在内存的高地址中,而数据的高位,保存在内存的低地址中;
小端存储,是指数据的低位保存在内存的低地址中,而数据的高位,,保存在内存的高地址中。
例:
int a = 1;
整形1的16进制表示为
0x00 00 00 01
小端存储:
(低地址)01 00 00 00 (高地址)
大端存储:
(高地址)00 00 00 01(低地址)
以VS2022为例,存储模式为小端存储:
3. 浮点型在内存中的存储
3.1 浮点数存储规则
浮点数和整数在内存中的存储方式不同
举个例子:
#include <stdio.h>
int main()
{
int n = 5;
float* pf = (float*)&n;
printf("n的值为:%d\n", n);
printf("*pf的值为:%f\n", *pf);
*pf = 5.0;
printf("num的值为:%d\n", n);
printf("*pf的值为:%f\n", *pf);
return 0;
}
这段代码的运行结果如下:
n和*pf在内存中明明是同一个数,但浮点数和整数的解读结果差别却很大,这恰恰说明了整数和浮点数在计算机内部的存储方式是不同的。
详细解读:
根据国际标准IEEE(电气和电子工程协会) 754,任意一个二进制浮点数V可以表示成下面的形式:
(-1)^S * M * 2^E
(-1)^S表示符号位,当S=0,V为正数;当S=1,V为负数
M表示有效数字,大于等于1,小于2
2^E表示指数位
例:
十进制5.5用二进制表示为101.1(二进制的小数点右边第一位为2的-1次方,第二位为2的-2次方,以此类推)
按照上面的规定,得出S=0、M=1.011、 E=2,相当于
1.011*2^2
IEEE 754规定:
对于32位的浮点数,最高的1位是符号位s,接着的8位是指数E,剩下的23位为有效数字M
对于64位的浮点数,最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M
IEEE 754对有效数字M和指数E,还有一些特别规定
因为1≤M<2 ,M可以写成 1.xxxxxx 的形式,其中xxxxxx表示小数部分。
IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的xxxxxx部分。比如保存1.011的时候,只保存011,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第一位的1舍去以后,等于可以保存24位有效数字。
指数E的情况较为复杂
首先,E是一个无符号整数(unsigned int)
如果E为8位,它的取值范围为0~255;如果E为11位,它的取值范围为0 ~ 2047。但是,科学计数法中的E是可以出现负数的,所以IEEE 754规定,存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。比如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。
其次,将E从内存中取出时分为三种情况
- E不全为0或不全为1
这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将有效数字M前加上第一位的1。
例:
0.5的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为1.0*2^(-1),其阶码为-1+127=126,表示为01111110,而尾数1.0去掉整数部分为0,补齐0到23位00000000000000000000000,则其二进制表示形式为:
0 01111110 00000000000000000000000
2. E全为0
这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于0的很小的数字。
3.E全为1
这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s)
现在,让我们重新看一下前面这段代码
#include <stdio.h>
int main()
{
int n = 5;
float* pf = (float*)&n;
printf("n的值为:%d\n", n);
printf("*pf的值为:%f\n", *pf);
*pf = 5.0;
printf("num的值为:%d\n", n);
printf("*pf的值为:%f\n", *pf);
return 0;
}
首先,将 0x00000005 拆分,得到第一位符号位s=0,后面8位的指数 E=00000000 ,
最后23位的有效数字M=000 0000 0000 0000 0000 0101
5 -> 0000 0000 0000 0000 0000 0000 0000 0101
由于指数E全为0,所以符合上一节的第二种情况。因此,浮点数V就写成:
V=(-1) ^ 0 × 0.00000000000000000000101×2 ^ (-126)=1.001×2^(-146)
V是一个很小的接近于0的正数,所以用十进制小数表示就是0.000000
再看例题的第二部分
首先,浮点数5.0等于二进制的101.0,即1.01×2^2
5.0 -> 101.0 ->(-1) ^ 01.012^2 -> s=0, M=1.01,E=2+127=129
那么,第一位的符号位s=0,有效数字M等于01后面再加21个0,凑满23位,指数E等于2+127=129,即10000001。所以,写成二进制形式,应该是s+E+M,即
0 10000001 01 00000 0000 0000 0000 0000
这个32位的二进制数,还原成十进制,正是 1,084,227,584。