比较两种判断相同二叉树的方法:递归与遍历序列对比

在二叉树操作中,判断两棵树是否相同是一个常见的问题。本文将对比两种不同的解决方案:递归法遍历序列对比法,分析它们的优缺点,并探讨为何递归法是更优的选择。

问题描述

给定两棵二叉树的根节点 p 和 q,判断它们是否在结构和节点值上完全相同。

方法一:递归法

递归法的核心思想是逐层比较节点,确保每个节点的值和结构一致。

public boolean isSameTree(TreeNode p, TreeNode q) {
    if (p == null && q == null) return true;
    else if (p == null || q == null) return false;
    else if (p.val != q.val) return false;
    return isSameTree(p.left, q.left) && isSameTree(p.right, q.right);
}
分析
  1. 正确性:递归法直接比较当前节点的值和结构,并递归检查左右子树。只有当所有对应节点均匹配时,才返回 true

  2. 时间复杂度:O(n),每个节点仅访问一次。

  3. 空间复杂度:O(h),其中 h 为树的高度(递归栈的深度)。

方法二:遍历序列对比法

该方法通过生成两棵树的前序、中序和后序遍历序列,并比较三者是否完全一致。

class Solution {
    public boolean isSameTree(TreeNode p, TreeNode q) {
        List<Integer> arrMiddleP = new ArrayList<Integer>();
        List<Integer> arrMiddleQ = new ArrayList<Integer>();
        List<Integer> preP = new ArrayList<Integer>();
        List<Integer> preQ = new ArrayList<Integer>();
        List<Integer> afterP = new ArrayList<Integer>();
        List<Integer> afterQ = new ArrayList<Integer>();
        middle(p, arrMiddleP);
        middle(q, arrMiddleQ);
        pre(p, preP);
        pre(q, preQ);
        after(p, afterP);
        after(q, afterQ);
        if (arrMiddleP.equals(arrMiddleQ) && preP.equals(preQ)&&(afterP.equals(afterQ))) {
            return true;
        }
        return false;
    }

    public void middle(TreeNode x, List<Integer> arrMiddle) {
        if (x == null) {
            return;
        }
        middle(x.left, arrMiddle);
        arrMiddle.add(x.val);
        middle(x.right, arrMiddle);
    }

    public void pre(TreeNode x, List<Integer> arrPre) {
        if (x == null) {
            return;
        }
        arrPre.add(x.val);
        pre(x.left, arrPre);
        pre(x.right, arrPre);
    }
    public void after(TreeNode x, List<Integer> arrPre) {
        if (x == null) {
            return;
        }
        
        after(x.left, arrPre);
        after(x.right, arrPre);
        arrPre.add(x.val);
    }

}
分析
  1. 思路:如果两棵树的前序、中序、后序遍历结果完全相同,则认为它们相同。

  2. 潜在问题

    • 结构信息丢失:遍历序列未记录 null 节点,导致不同结构的树可能生成相同的遍历序列。例如:

      • 树 A:根节点为 1,左子节点为 1

      • 树 B:根节点为 1,右子节点为 1
        两者的前序、中序、后序结果均为 [1, 1],但结构不同。

    • 重复值问题:当节点值重复时,遍历序列无法区分结构差异。

  3. 效率:需要三次遍历,时间和空间复杂度均为 O(n),效率低于递归法。


对比与结论

方法正确性时间复杂度空间复杂度结构敏感性
递归法O(n)O(h)
遍历序列对比法O(n)O(n)
  1. 正确性:递归法直接比较结构和值,适用于所有情况。遍历序列法在节点值重复或结构歧义时可能失效。

  2. 效率:递归法在早期发现不同时可立即返回,而遍历序列法必须完成所有遍历。

  3. 实现复杂度:递归法代码简洁,逻辑清晰;遍历序列法需要额外生成和比较多个序列。


为什么递归法更优?

  • 结构敏感性:递归法严格检查每个节点的位置和值,确保结构完全一致。

  • 提前终止:一旦发现节点不匹配,递归立即终止,避免不必要的遍历。

  • 资源友好:无需存储遍历结果,空间复杂度更低。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值