[USACO1.2] 方块转换 Transformations--洛谷

[USACO1.2] 方块转换 Transformations

题目描述

一块 n × n n \times n n×n 正方形的黑白瓦片的图案要被转换成新的正方形图案。写一个程序来找出将原始图案按照以下列转换方法转换成新图案的最小方式:

  • 90 ° 90\degree 90°:图案按顺时针转 90 ° 90\degree 90°

  • 180 ° 180\degree 180°:图案按顺时针转 180 ° 180\degree 180°

  • 270 ° 270\degree 270°:图案按顺时针转 270 ° 270\degree 270°

  • 反射:图案在水平方向翻转(以中央铅垂线为中心形成原图案的镜像)。

  • 组合:图案在水平方向翻转,然后再按照 1 ∼ 3 1 \sim 3 13 之间的一种再次转换。

  • 不改变:原图案不改变。

  • 无效转换:无法用以上方法得到新图案。

如果有多种可用的转换方法,请选择序号最小的那个。

只使用上述 7 7 7 个中的一个步骤来完成这次转换。

输入格式

第一行一个正整数 n n n

然后 n n n 行,每行 n n n 个字符,全部为 @-,表示初始的正方形。

接下来 n n n 行,每行 n n n 个字符,全部为 @-,表示最终的正方形。

输出格式

单独的一行包括 1 ∼ 7 1 \sim 7 17 之间的一个数字(在上文已描述)表明需要将转换前的正方形变为转换后的正方形的转换方法。

样例 #1

样例输入 #1

3
@-@
---
@@-
@-@
@--
--@

样例输出 #1

1

提示

【数据范围】
对于 100 % 100\% 100% 的数据, 1 ≤ n ≤ 10 1\le n \le 10 1n10

题目翻译来自 NOCOW。

USACO Training Section 1.2

题解:

该题主要是分支结构,将一个一个条件与变化的数组相比较;
我采用a[15][15],b[15][15],c[15][15],d[15][15];
我也输入了 n n n;主要采用的是全局变量;

  1. a[15][15]:输入的数组原型;
  2. b[15][15]:输入的变化后的数组;
  3. c[15][15]:作为代码中将a变化后的数组输入到c中;
  4. d[15][15]:他作为第五个工作中第二次变化时的内存载体;
  5. n:作为它的数组的行列;

代码:

char a[15][15],b[15][15],c[15][15],d[15][15];//c是要与b做比较的数组; 
int n;

第一、旋转 9 0 o 90^o 90o :

(2,0)(1,0)(0,0)
(2,1)(1,1)(0,1)
(2,2)(1,2)(0,2)

很明显:

c [ i ] [ j ] = a [ n − j − 1 ] [ i ] c[i][j]=a[n-j-1][i] c[i][j]=a[nj1][i]

代码(eqaul():检查b与c是否相同):

bool work1(){
for(int i=0;i<n;i++){
	for(int j=0;j<n;j++){
		c[i][j]=a[n-j-1][i];
	}
}
if(equal()){
	return true;
}	
return false;
} 

第二、旋转 18 0 o 180^o 180o

(2,2)(2,1)(2,0)
(1,2)(1,1)(1,0)
(0,2)(0,1)(0,0)

很明显:
c [ i ] [ j ] = a [ n − i − 1 ] [ n − j − 1 ] c[i][j]=a[n-i-1][n-j-1] c[i][j]=a[ni1][nj1]

bool work2(){
	for(int i=0;i<n;i++){
		for(int j=0;j<n;j++){
			c[i][j]=a[n-i-1][n-j-1];
		}
	}
	if(equal()){
		return true;
	}
	return false;
}

第三、旋转 27 0 o 270^o 270o

(0,2)(1,2)(2,2)
(0,1)(1,1)(2,1)
(0,0)(1,0)(2,0)

很明显:
c [ i ] [ j ] = a [ j ] [ n − i − 1 ] c[i][j]=a[j][n-i-1] c[i][j]=a[j][ni1]

bool work3(){
	for(int i=0;i<n;i++){
		for(int j=0;j<n;j++){
			c[i][j]=a[j][n-i-1];
		}
	}
	if(equal()){
		return true;
	}
	return false;
}

第四、对称

(0,2)(0.1)(0,0)
(1,2)(1.1)(1,0)
(2,2)(1,2)(2,0)

很显然
c [ i ] [ j ] = a [ i ] [ n − j − 1 ] ; c [ i ] [ n − j − 1 ] = a [ i ] [ j ] ; c[i][j]=a[i][n-j-1]; c[i][n-j-1]=a[i][j]; c[i][j]=a[i][nj1];c[i][nj1]=a[i][j];

bool work4(){
	for(int i=0;i<n;i++){
		for(int j=0;j<=n/2;j++){
				c[i][j]=a[i][n-j-1];
			    c[i][n-j-1]=a[i][j];
		}
	}
if(equal()){
	return true; 
} 
return false;
}

第五:对称后再做1/2/3:

很显然先:
c [ i ] [ j ] = a [ i ] [ n − j − 1 ] ; c [ i ] [ n − j − 1 ] = a [ i ] [ j ] ; c[i][j]=a[i][n-j-1]; c[i][n-j-1]=a[i][j]; c[i][j]=a[i][nj1];c[i][nj1]=a[i][j];

再1: c [ i ] [ j ] = a [ n − j − i ] [ i ] c[i][j]=a[n-j-i][i] c[i][j]=a[nji][i]

或2: c [ i ] [ j ] = a [ n − i − 1 ] [ n − j − 1 ] c[i][j]=a[n-i-1][n-j-1] c[i][j]=a[ni1][nj1]

或3: c [ i ] [ j ] = a [ j ] [ n − i − 1 ] c[i][j]=a[j][n-i-1] c[i][j]=a[j][ni1]

这样就需要d数组来放另一个数组的数据;

bool work5(){
	work4(); //这个是对称; 
	if(workfor5()){ //这个是1/2/3的函数; 
		return true;
	}
	return false;
}
bool equal2(){
	int sum=0;
	for(int i=0;i<n;i++){
		if(!strcmp(d[i],b[i])){
			sum++;
		}
	}
	if(sum==n)return  true;
	return false;
}
bool workfor5(){
	for(int i=0;i<n;i++){
	for(int j=0;j<n;j++){
		d[i][j]=c[n-j-1][i];
	}
}
if(equal2()){
	return true;
}
for(int i=0;i<n;i++){
		for(int j=0;j<n;j++){
			d[i][j]=c[n-i-1][n-j-1];
		}
	}
	if(equal2()){
		return true;
	}
	for(int i=0;i<n;i++){
		for(int j=0;j<n;j++){
			d[i][j]=c[j][n-i-1];
		}
	}
	if(equal2()){
		return true;
	}
	return false;
}

第六:a与b比较是否相同

首先:我采用的是strcmp()这一个内置函数;

bool work6(){
	int sum=0;
	for(int i=0;i<n;i++){
	if(!strcmp(a[i],b[i])){
		sum++;
	}
}
if(sum==3)return true;
	return false;
}

总代码:

#include<iostream>
#include<cstring>
#include<bits/stdc++.h>
using namespace std;
char a[15][15],b[15][15],c[15][15],d[15][15];//c是要与b做比较的数组; 
int n;
bool equal(){
	int sum=0;
	for(int i=0;i<n;i++){
		if(!strcmp(b[i],c[i])){
			sum++;
		}
	}
	if(sum==n)return true;
	return false;
}
bool equal2(){
	int sum=0;
	for(int i=0;i<n;i++){
		if(!strcmp(d[i],b[i])){
			sum++;
		}
	}
	if(sum==n)return  true;
	return false;
}
bool workfor5(){
	for(int i=0;i<n;i++){
	for(int j=0;j<n;j++){
		d[i][j]=c[n-j-1][i];
	}
}
if(equal2()){
	return true;
}
for(int i=0;i<n;i++){
		for(int j=0;j<n;j++){
			d[i][j]=c[n-i-1][n-j-1];
		}
	}
	if(equal2()){
		return true;
	}
	for(int i=0;i<n;i++){
		for(int j=0;j<n;j++){
			d[i][j]=c[j][n-i-1];
		}
	}
	if(equal2()){
		return true;
	}
	return false;
}
bool work1(){
for(int i=0;i<n;i++){
	for(int j=0;j<n;j++){
		c[i][j]=a[n-j-1][i];
	}
}
if(equal()){
	return true;
}	
return false;
} 
bool work2(){
	for(int i=0;i<n;i++){
		for(int j=0;j<n;j++){
			c[i][j]=a[n-i-1][n-j-1];
		}
	}
	if(equal()){
		return true;
	}
	return false;
}
bool work3(){
	for(int i=0;i<n;i++){
		for(int j=0;j<n;j++){
			c[i][j]=a[j][n-i-1];
		}
	}
	if(equal()){
		return true;
	}
	return false;
}
bool work4(){
	for(int i=0;i<n;i++){
		for(int j=0;j<=n/2;j++){
				c[i][j]=a[i][n-j-1];
			    c[i][n-j-1]=a[i][j];
		}
	}
if(equal()){
	return true; 
} 
return false;
}
bool work5(){
	work4(); //这个是对称; 
	if(workfor5()){ //这个是1/2/3的函数; 
		return true;
	}
	return false;
}
bool work6(){
	int sum=0;
	for(int i=0;i<n;i++){
	if(!strcmp(a[i],b[i])){
		sum++;
	}
}
if(sum==3)return true;
	return false;
}
int main(){
	cin>>n;
	for(int i=0;i<n;i++)scanf("%s",&a[i]);//原先的数组; 
	for(int i=0;i<n;i++)scanf("%s",&b[i]);
	int sum=0;
	if(work1()){
		cout<<"1";
	}
	else if(work2()){
		cout<<"2";	
		}
	else if(work3()){
		cout<<"3";
	}
	else if(work4()){
		cout<<"4";
	}
	else if(work5()){
		cout<<"5";
	}
	else if(work6()){
		cout<<"6";
	} 
	else{
		cout<<"7";
	}
return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值