以下是人工智能专业的学习顺序与推荐书籍:
学习顺序
1. 基础知识阶段
• 数学基础:学习线性代数、微积分、概率论与数理统计等,这些是理解AI算法的重要基础。
• 编程基础:掌握Python编程,包括运行环境搭建、基本语法、函数、面向对象编程以及科学计算。
• AI基础概念:了解人工智能、机器学习、深度学习等基本概念,以及它们之间的关系。
2. 机器学习阶段
• 学习常用机器学习算法的原理、优缺点、步骤及应用,如决策树、支持向量机等。
• 掌握机器学习建模工具,如scikit-learn,并在小数据集上进行实践。
• 学习建模分步过程,例如CRISP-DM。
3. 深度学习阶段
• 了解深度学习相关概念,学习深度学习常用算法及方法体系,如CNN、RNN、LSTM、Transformer等。
• 学习深度学习框架,如Keras、PyTorch、TensorFlow。
• 学习自然语言处理和计算机视觉的相关内容,并在Kaggle等平台上进行实践。
4. 生成式人工智能阶段
• 学习提示工程、NLP的生成模型、计算机视觉的生成模型等。
• 了解如何从头开始构建生成模型,以及生成人工智能的最新趋势和研究。
5. 模型部署阶段
• 学习MLOps相关知识,包括基础知识、部署方式、主要内容、核心概念以及管理工具。
6. 补充知识阶段
• 学习集成学习相关概念、常用算法及Python库,并进行实践。
• 学习不同领域的专业知识,如保险、信贷、物流、电商等。
推荐书籍
1. 基础知识
• 《线性代数及其应用》(Linear Algebra and Its Applications)-Gilbert Strang。
• 《微积分》(Calculus)-James Stewart。
• 《概率论与数理统计》(Probability and Statistics)-Morris H.DeGroot。
• 《Python编程:从入门到实践》(Python Crash Course:A Hands-On,Project-Based Introduction to Programming)-Eric Matthes。
2. 机器学习
• 《机器学习》(西瓜书)-周志华。
• 《统计学习方法》-李航。
• 《Python机器学习》(Python Machine Learning)-Sebastian Raschka。
• 《深入浅出机器学习》(Hands-On Machine Learning with Scikit-Learn,Keras,and TensorFlow)-Aurélien Géron。
3. 深度学习
• 《深度学习》(花书)-Ian Goodfellow,Yoshua Bengio,Aaron Courville。
• 《深度学习入门:基于Python的理论与实现》-斋藤康毅。
• 《深度学习入门2:自制框架》-斋藤康毅。
• 《深度学习进阶:自然语言处理》-斋藤康毅。
• 《深度学习入门4:强化学习》-斋藤康毅。
4. 生成式人工智能
• 《Build a Large Language Model(From Scratch)》-Sebastian Raschka。
• 《大模型应用解决方案》。
• 《大规模语言模型》-复旦大学张奇教授团队。
5. 模型部署
• 《MLOps:机器学习的工业化》。
6. 补充知识
• 《集成学习:基础与算法》-周志华,李楠。