自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(12)
  • 收藏
  • 关注

原创 Timesnet2

它会读取数据,构建模型,训练过程中评估模型的准确率,并自动保存效果最好的模型(带早停策略),最后在测试集上评估最终效果。通俗来说,这段代码就像是“把时间序列拆解成三部分:它在往哪走(趋势)、重复什么模式(季节)、保持在什么高度(水平),然后用这些信息去预测接下来会发生什么”,是一种结构清晰、可解释性强的时间序列预测方法。,用于训练、验证或测试不同任务(如预测、分类、异常检测),支持多种数据集格式和自定义参数(如窗口大小、batch size、时间编码等),从而提高代码的模块化和灵活性。

2025-04-14 14:24:15 587

原创 Timesnet1

TimesNet 是一种用于时间序列数据的深度学习模型,特别适用于长序列的预测任务。它是一个基于 Transformer 的模型,在时间序列预测中具有优势,能够处理复杂的时序依赖关系。

2025-04-14 12:59:52 684

原创 【解决CH3】交叉检验

交叉验证是把数据拆分成不同部分来训练和测试模型,从而确保模型既能学好训练集,又能在未见过的数据上表现不错。模型在训练集上表现得很好,但在测试集上效果却很差——说明它“只学会了死记硬背”,没学会“举一反三”。交叉验证是训练模型前必须做的第一步它能帮你发现是否过拟合,是否泛化良好一个合理的交叉验证方案,是构建高质量模型的基础交叉验证:是一种将数据划分为多个子集、轮流用于训练和验证,以评估模型泛化能力的方法。(准备)训练模型。

2025-04-14 12:51:14 938

原创 【解决CH2】无监督和有监督学习

数据中包含“目标”或“标签”(我们知道答案是什么)。目标可以是一个值(如价格)或一个分类(如猫/狗)。

2025-04-14 10:25:53 780

原创 【解决CH1】准备环境

是 Conda 的简化版,只安装必要的工具,

2025-04-14 09:18:08 334

原创 Early Stopping(早停机制)

早停(Early Stopping)是一种防止模型过拟合的正则化*策略,它在模型训练过程中监控某个指标(通常是验证集的 loss 或 accuracy),

2025-04-11 09:29:15 704

原创 DLinear(Decomposition-Linear)

DLinear(Decomposition-Linear)模型是一种用于时间序列预测的深度学习模型,首次由华为诺亚方舟实验室在论文中提出。它的核心思想是将时间序列分解为趋势和季节两个部分,然后分别用线性层*进行建模,属于一种轻量级、解释性强的模型。DLinear 是一种结合了时间序列分解思想和简单线性结构的轻量级模型。它在效率和解释性方面有显著优势,特别适合结构清晰、趋势明显的时间序列数据。

2025-04-10 14:29:38 971

原创 N-BEATS(Neural Basis Expansion Analysis for Time Series)

总体来说,N-BEATS 是一个兼具准确率与灵活性的新型时间序列预测模型,适合在数据量大、预测窗口灵活、特征难构造的场景下使用。整个模型由多个这样的 block 顺序堆叠而成,每个 block 会尝试“解释”输入时间序列的一部分,并将剩余未解释的部分传给下一个 block。该模型基于前馈神经网络,完全不依赖循环结构(如RNN、LSTM)或卷积结构,表现出了与甚至超过传统统计模型和深度模型的性能。*每个 block 的结构可以相同,但它们学习到的参数和建模的时间序列模式是不同的。*逐步对时间序列建模。

2025-04-10 13:33:43 667

原创 MLP(Multilayer Perceptron,多层感知机)

MLP(多层感知机)能够通过堆叠多个全连接层和引入非线性激活函数(如ReLU、Sigmoid),自动从原始输入数据中逐层提取并组合高阶特征表示,从而绕过传统机器学习中需要人工设计特征工程的环节,实现端到端的学习功能。*BERT(双向编码表示模型)是基于Transformer的双向预训练语言模型,通过掩码语言建模(MLM)和下一句预测(NSP)任务学习上下文相关词向量,成为NLP领域通用特征提取器,可微调适配多种语言任务。:通过隐藏层和激活函数的组合,MLP可逼近任意复杂函数,解决线性不可分问题。

2025-04-10 10:25:38 953

原创 TCN(Temporal Convolutional Network,时间卷积网络)

它通过因果卷积(Causal Convolution)和膨胀卷积(Dilated Convolution)*结合残差连接(Residual Connections),解决了传统循环神经网络(RNN)在长序列任务中的梯度消失、并行计算困难等问题。*传统循环神经网络(RNN):通过循环更新的隐藏状态将历史信息传递到当前时间步,使当前输出同时依赖当前输入和之前时刻的隐状态,从而实现对序列数据的时序建模。例如,卷积核仅覆盖当前及之前的时间步。:与RNN的顺序处理不同,TCN的卷积操作可并行化,显著加速训练和推理。

2025-04-10 09:29:14 1202

原创 RNN(循环神经网络)

循环神经网络(RNN)是一种适用于序列数据的神经网络模型。与传统的前馈神经网络*不同,RNN在网络中具有“记忆”能力,能够通过循环结构保持先前时间步的状态信息,因此特别适合处理时间序列数据或具有时序依赖关系的任务,如自然语言处理、语音识别等。RNN是一种强大的序列数据建模工具,能够处理具有时序依赖关系的数据。虽然它在某些情况下存在梯度消失等问题,但通过改进的变种(如LSTM和GRU)能够很好地解决这些问题。

2025-04-09 09:45:41 508

原创 LSTM(长短期记忆网络)

LSTM(Long Short-Term Memory)是一种用于处理和预测时间序列数据的递归神经网络(RNN)变种。它被设计用于克服标准RNN的长期依赖问题,使得模型能够记住长期的历史信息。LSTM主要用于自然语言处理、语音识别、时间序列预测等领域。

2025-04-09 08:07:11 428

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除