数据结构——新手村级二叉树讲解

本文详细介绍了二叉树的概念,包括树型结构的基础概念、二叉树的定义、特殊类型的二叉树(满二叉树与完全二叉树)、二叉树的性质以及二叉树的存储(顺序存储与链式存储)。同时,文章讲解了二叉树的遍历方法,包括前序遍历、中序遍历、后序遍历和层序遍历,并给出了相应的遍历代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一,树型结构

1.什么是树型结构

2.基础概念

3.树的表示形式(了解)

二,二叉树

1.什么是二叉树

 2.两种特殊的二叉树

 3.二叉树的性质

4.二叉树的存储

(1).顺序存储

(2).链式存储

5.二叉树的遍历

(1).什么是遍历

(2).前序遍历

(2).中序遍历

(3).后序遍历

(4).层序遍历

(5).二叉树的基本操作


一,树型结构

1.什么是树型结构

树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是朝上,而朝下的。

特点:

(1).有一个特殊的结点,称为根结点,根结点没有前驱结点

(2).除根结点外,其余结点被分成M(M > 0)个互不相交的集合T1、T2、......、Tm,其中每一个集合 Ti (1 <= i<= m) 又是一棵与树类似的子树。

(3).每棵子树的根结点有且只有一个前驱,可以有0个或多个后继

(4).树是递归定义的

(5).子树之间不能有交集,否则就不是树形结构

 

2.基础概念

结点的度:一个结点含有子树的个数称为该结点的度; 如上图:A的度为6
树的度:一棵树中,所有结点度的最大值称为树的度; 如上图:树的度为6
叶子结点或终端结点度为0的结点称为叶结点; 如上图:B、C、H、I...等节点为叶结点
双亲结点或父结点:若一个结点含有子结点,则称其为子结点的父结点; 如上图:A是B的父结点
孩子结点或子结点:一个结点其下的结点,为该结点的子结点; 如上图:B是A的子结点
根结点:一棵树中,没有双亲结点的结点;如上图:A
结点的层次:从根开始定义起,根为第1层,根的子结点为第2层,以此类推
树的高度或深度:树中结点的最大层次; 如上图:树的高度为4
———————————————————了解即可————————————————————
非终端结点或分支结点度不为0的结点; 如上图:D、E、F、G...等节点为分支结点
兄弟结点:具有相同父结点的结点互称为兄弟结点; 如上图:B、C是兄弟结点
堂兄弟结点双亲在同一层的结点互为堂兄弟;如上图:H、I互为兄弟结点
结点的祖先:根结点;如上图:A是所有结点的祖先
子孙:除根结点以外的结点。如上图:所有结点都是A的子孙
森林:由m(m>=0)棵互不相交的树组成的集合称为森林

3.树的表示形式(了解)

了解:双亲表示法,孩子表示法、孩子双亲表示法

常用:孩子兄弟表示法

class Node {
  int value; // 树中存储的数据
  Node firstChild; // 第一个孩子引用
  Node nextBrother; // 下一个兄弟引用
}

二,二叉树

1.什么是二叉树

一棵二叉树是结点的一个有限集合,该集合:
1. 或者为空
2. 或者是由一个根节点加上两棵别称为左子树和右子树的二叉树组成。

 2.两种特殊的二叉树

1. 满二叉树: 一棵二叉树,如果每层的结点数都达到最大值,则这棵二叉树就是满二叉树。                满二叉树是一种特殊的完全二叉树。


2. 完全二叉树:设二叉树的高度为h,除第 h 层外,其它各层 (1~h-1) 的结点数都达到最大个数,且第h层的叶子结点都是从左到右依次排布的                                                                                        完全二叉树是由满二叉树而引出来的,效率更高,堆排序的数据结构即完全二叉树。

 3.二叉树的性质

1. 一棵非空二叉树的第i层上最多有 2^(i-1)(i>0)个结点
2. 深度为K的二叉树的最大结点数是2^k-1 (k>=0)
3.  叶结点为 n0, 度为2的结点为 n2,则有n0=n2+1
4. 具有n个结点的完全二叉树的深度k为log2(n+1) 取整
5. 具有n个结点的完全二叉树,如果按照从上至下从左至右的顺序对所有节点从0开始编号,则对于序号为i的结点有:
若i>0,双亲序号:(i-1)/2;i=0,i为根结点编号,无双亲结点
若2i+1<n,左孩子序号:2i+1,否则无左孩子;若2i+2<n,右孩子序号:2*(i+1),否则无右孩子     6.一颗n个结点的树有n-1条边

4.二叉树的存储

二叉树的存储结构分为:顺序存储链式存储

(1).顺序存储

指使用顺序表(数组)存储二叉树,此存储方法只适用于完全二叉树

对于一般二叉树,若使用该存储方式,需要添加一些不存在的空结点

 排序为A B C D E F G H I J

(2).链式存储

通过一个一个的节点引用起来的,常见的表示方式有二叉和三叉表示方式

二叉链至少包含:左指针域lchild、数据域data、右指针域rchild

// 孩子表示法
class Node {
  int val; // 数据域
  Node left; // 左孩子的引用,常常代表左孩子为根的整棵左子树
  Node right; // 右孩子的引用,常常代表右孩子为根的整棵右子树
}
// 孩子双亲表示法
class Node {
  int val; // 数据域
  Node left; // 左孩子的引用,常常代表左孩子为根的整棵左子树
  Node right; // 右孩子的引用,常常代表右孩子为根的整棵右子树
  Node parent;   // 当前节点的根节点
}

5.二叉树的遍历

(1).什么是遍历

遍历(Traversal)是指沿着某条搜索路线,依次对树中每个结点均做一次且仅做一次访问。访问结点所做的操作依赖于具体的应用问题。

(2).前序遍历

前序遍历(Preorder Traversal 亦称先序遍历)——访问根结点--->根的左子树--->根的右子树

 前序遍历结果:1 2 3 4 5 6

void preOrder(TreeNode root){

      if(root==null) return ;

      System.out.print(root.val+" ");

      preOrder(root.left);

      preOrder(root.right);

}

(2).中序遍历

中序遍历(Inorder Traversal)——根的左子树--->根节点--->根的右子树

 中序遍历结果:3 2 1 5 4 6

void inOrder(TreeNode root){

      if(root==null) return ;

      inOrder(root.left);

      System.out.print(root.val+" ");

      inOrder(root.right);

}

(3).后序遍历

后序遍历(Postorder Traversal)——根的左子树--->根的右子树--->根节点

 后序遍历结果:3 1 5 6 4 1

void postOrder(TreeNode root){

      if(root==null) return ;

      postOrder(root.left);

      postOrder(root.right);

      System.out.print(root.val+" ");   

}

(4).层序遍历

自上而下,自左至右逐层访问树的结点的过程

 层序遍历结果:A B C D E F G H I

利用队列先进先出的性质

void levelOrder(TreeNode root){
    if(root==null) return ;
    Queue<TreeNode> queue=new LinkedList<>();
    queue.offer(root);
    while(!queue.isEmpty()){
        TreeNode cur=queue.poll();
        System.out.println(cur.val+" ");
        if(cur.left!=null){
            queue.offer(cur.left);
        }
        if(cur.right!=null){
            queue.offer(cur.right);
        }
    }
}

(5).二叉树的基本操作

先实现一个TreeNode类,用于后面的使用

import java.util.*;

public class TreeNode {
    public char val;
    public TreeNode left;
    public TreeNode right;
    private TreeNode root;

    public TreeNode(char val) {
        this.val = val;
    }
    public void createTree() {
        TreeNode A = new TreeNode('A');
        TreeNode B = new TreeNode('B');
        TreeNode C = new TreeNode('C');
        TreeNode D = new TreeNode('D');
        TreeNode E = new TreeNode('E');
        TreeNode F = new TreeNode('F');
        TreeNode G = new TreeNode('G');
        TreeNode H = new TreeNode('H');

        A.left = B;
        A.right = C;
        B.left = D;
        B.right = E;
        C.left = F;
        C.right = G;
        E.right = H;
        this.root = A;
    }

1.获取树中叶子结点数

public static int leafSize;

    int getLeafNodeCount(TreeNode root) {
        if(root==null){
            return 0;
        }
        if(root.left==null&&root.right==null){
            return 1;
        }
        return getLeafNodeCount(root.left)+getLeafNodeCount(root.right);

    }

2.获取树中结点数

int getLeafSize(TreeNode root) {
        if(root==null){
            return 0;
        }
        if(root.left==null&&root.right==null){
            leafSize++;
        }
        getLeafNodeCount2(root.left);
        getLeafNodeCount2(root.right);
        return leafSize;

    }

3.获取树的高度

int getHeight(TreeNode root){
        if(root==null){
            return 0;
        }
        int leftHeight=getHeight(root.left);
        int rightHeight=getHeight(root.right);
        int max=leftHeight>rightHeight?leftHeight:rightHeight;
        return max+1;

    }

4.检测val的元素是否存在

TreeNode find(TreeNode root ,int val){
        if(root==null)return null;
        if(root.val==val){
            return root;
        }
        TreeNode ret1=find(root.left,val);
        if(ret1!=null){
            return ret1;
        }
        TreeNode ret2=find(root.right,val);
        if(ret2!=null){
            return ret2;
        }
        return null;
    }

5.判断是否为完全二叉树

boolean isCompleteTree(TreeNode root){
        if(root==null) return true ;
        Queue<TreeNode> queue=new LinkedList<>();
        queue.offer(root);
        while(!queue.isEmpty()){
            TreeNode cur=queue.poll();
            if(cur!=null){
                queue.offer(cur.left);
                queue.offer(cur.right);
            }else break;
        }
        while(!queue.isEmpty()){
            TreeNode cur=queue.poll();
            if(cur!=null){
                return false;
            }else{
                queue.poll();
            }
        }
        return true;

    }

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值