①Druid连接池:
配置:
| 配置 | 缺省 | 说明 |
|---|---|---|
| name | 配置这个属性的意义在于,如果存在多个数据源,监控的时候可以通过名字来区分开来。 如果没有配置,将会生成一个名字,格式是:”DataSource-” + System.identityHashCode(this) | |
| jdbcUrl | 连接数据库的url,不同数据库不一样。例如:mysql : jdbc:mysql://10.20.153.104:3306/druid2 oracle : jdbc:oracle:thin:@10.20.149.85:1521:ocnauto | |
| username | 连接数据库的用户名 | |
| password | 连接数据库的密码。如果你不希望密码直接写在配置文件中,可以使用ConfigFilter。详细看这里:https://github.com/alibaba/druid/wiki/%E4%BD%BF%E7%94%A8ConfigFilter | |
| driverClassName | 根据url自动识别 这一项可配可不配,如果不配置druid会根据url自动识别dbType,然后选择相应的driverClassName(建议配置下) | |
| initialSize | 0 | 初始化时建立物理连接的个数。初始化发生在显示调用init方法,或者第一次getConnection时 |
| maxActive | 8 | 最大连接池数量 |
| maxIdle | 8 | 已经不再使用,配置了也没效果 |
| minIdle | 最小连接池数量 | |
| maxWait | 获取连接时最大等待时间,单位毫秒。配置了maxWait之后,缺省启用公平锁,并发效率会有所下降,如果需要可以通过配置useUnfairLock属性为true使用非公平锁。 | |
| poolPreparedStatements | false | 是否缓存preparedStatement,也就是PSCache。PSCache对支持游标的数据库性能提升巨大,比如说oracle。在mysql下建议关闭。 |
| maxOpenPreparedStatements | -1 | 要启用PSCache,必须配置大于0,当大于0时,poolPreparedStatements自动触发修改为true。在Druid中,不会存在Oracle下PSCache占用内存过多的问题,可以把这个数值配置大一些,比如说100 |
| validationQuery | 用来检测连接是否有效的sql,要求是一个查询语句。如果validationQuery为null,testOnBorrow、testOnReturn、testWhileIdle都不会其作用。 | |
| testOnBorrow | true | 申请连接时执行validationQuery检测连接是否有效,做了这个配置会降低性能。 |
| testOnReturn | false | 归还连接时执行validationQuery检测连接是否有效,做了这个配置会降低性能 |
| testWhileIdle | false | 建议配置为true,不影响性能,并且保证安全性。申请连接的时候检测,如果空闲时间大于timeBetweenEvictionRunsMillis,执行validationQuery检测连接是否有效。 |
| timeBetweenEvictionRunsMillis | 有两个含义: 1)Destroy线程会检测连接的间隔时间2)testWhileIdle的判断依据,详细看testWhileIdle属性的说明 | |
| numTestsPerEvictionRun | 不再使用,一个DruidDataSource只支持一个EvictionRun | |
| minEvictableIdleTimeMillis | ||
| connectionInitSqls | 物理连接初始化的时候执行的sql | |
| exceptionSorter | 根据dbType自动识别 当数据库抛出一些不可恢复的异常时,抛弃连接 | |
| filters | 属性类型是字符串,通过别名的方式配置扩展插件,常用的插件有: 监控统计用的filter:stat日志用的filter:log4j防御sql注入的filter:wall | |
| proxyFilters | 类型是List,如果同时配置了filters和proxyFilters,是组合关系,并非替换关系 |
简单实现:(采用硬编码实现)
//创建DruidDataSource连接池对象
DruidDataSource druidDataSource = new DruidDataSource();
//设置连接池配置信息
//必须设置的
druidDataSource.setDriverClassName("com.mysql.cj.jdbc.Driver");
druidDataSource.setUrl("jdbc:mysql://localhost:3306/mydatabase01");
druidDataSource.setUsername("root");
druidDataSource.setPassword("1234");
//非必须设置的
druidDataSource.setInitialSize(10);
druidDataSource.setMaxActive(20);
//通过连接池获取连接对象
Connection connection = druidDataSource.getConnection();
System.out.println(connection);
connection.close();
②Hikari连接池:
配置:
| 属性 | 默认值 | 说明 |
|---|---|---|
| isAutoCommit | true | 自动提交从池中返回的连接 |
| connectionTimeout | 30000 | 等待来自池的连接的最大毫秒数 |
| maxLifetime | 1800000 | 池中连接最长生命周期如果不等于0且小于30秒则会被重置回30分钟 |
| minimumIdle | 10 | 池中维护的最小空闲连接数 minIdle<0或者minIdle>maxPoolSize,则被重置为maxPoolSize |
| maximumPoolSize | 10 | 池中最大连接数,包括闲置和使用中的连接 |
| metricRegistry | null | 连接池的用户定义名称,主要出现在日志记录和JMX管理控制台中以识别池和池配置 |
| healthCheckRegistry | null | 报告当前健康信息 |
| poolName | HikariPool-1 | 连接池的用户定义名称,主要出现在日志记录和JMX管理控制台中以识别池和池配置 |
| idleTimeout | 是允许连接在连接池中空闲的最长时间 |
简单实现:(采用硬编码实现)
//创建HikariDataSource连接池对象
HikariDataSource hikariDataSource = new HikariDataSource();
//设置连接池配置信息
//必须设置的配置信息
hikariDataSource.setDriverClassName("com.mysql.cj.jdbc.Driver");
hikariDataSource.setJdbcUrl("jdbc:mysql://localhost:3306/mydatabase01");
hikariDataSource.setUsername("root");
hikariDataSource.setPassword("1234");
//非必须设置的
hikariDataSource.setMinimumIdle(5);
hikariDataSource.setMaximumPoolSize(10);
//通过连接池获取连接对象
Connection connection = hikariDataSource.getConnection();
System.out.println(connection);//查看是否获取到了对象
connection.close();
对比:
性能方面
-
HikariCP:
- HikariCP 被广泛认为是目前最快的 JDBC 连接池之一。
- 它的设计目标是极简和高性能,专注于减少延迟和提高吞吐量。
- HikariCP 使用了一些先进的技术来优化性能,例如自定义的线程调度器和高效的内存管理。
-
Druid:
- Druid 也是一个高性能的连接池,但它不仅仅是一个连接池,而是一个更全面的数据库连接池解决方案。
- Druid 提供了更多的功能,如监控、扩展性、SQL 解析等,这可能会稍微增加一些开销,但总体上仍然具有很好的性能。
- Druid 在高并发场景下表现良好,并且提供了多种配置选项来优化性能。
功能方面
-
HikariCP:
- 主要关注于提供一个快速和轻量级的连接池。
- 提供了基本的连接池功能,如连接泄漏检测、自动重连等。
- 配置相对简单,易于使用。
-
Druid:
- 提供了丰富的功能,包括:
- 监控:内置的监控功能可以实时查看连接池的状态。
- 扩展性:支持分布式部署,可以通过配置来扩展连接池。
- SQL 解析:可以解析 SQL 语句并提供统计信息。
- 防御 SQL 注入:通过 SQL 解析功能可以检测潜在的 SQL 注入攻击。
- 多数据源支持:可以同时管理多个数据源。
- 配置灵活:提供了大量的配置选项,可以根据具体需求进行调整。
- 提供了丰富的功能,包括:
易用性
-
HikariCP:
- 配置简单,API 设计直观。
- 文档清晰,社区活跃,容易找到帮助和支持。
-
Druid:
- 配置选项较多,可能需要更多的时间来熟悉和配置。
- 文档详细,但相比 HikariCP 可能需要更多的学习成本。
- 社区也较为活跃,但在国际社区中的知名度可能不如 HikariCP。
内存使用
-
HikariCP:
- 由于其极简设计,内存占用相对较小。
- 适合对内存使用有严格要求的应用。
-
Druid:
- 由于提供了更多的功能,内存占用可能稍大。
- 但是 Druid 也提供了内存优化选项,可以通过配置来减少内存使用。
社区支持
-
HikariCP:
- 由 Brett Wooldridge 维护,社区活跃,有大量的用户和贡献者。
- 更新频繁,新版本发布及时。
-
Druid:
- 由阿里巴巴集团维护,社区也很活跃。
- 由于阿里巴巴的支持,更新和维护也比较及时。
适用场景
-
HikariCP:
- 适用于需要高性能和低延迟的应用。
- 适用于简单的连接池需求,不需要太多额外功能的场景。
-
Druid:
- 适用于需要丰富功能和高级特性的应用。
- 适用于需要监控、SQL 解析、防御 SQL 注入等功能的复杂应用场景。
- 适用于高并发和大规模部署的环境。
总结
- 如果你的应用对性能要求极高,且不需要太多额外功能,HikariCP 是一个很好的选择。
- 如果你需要一个功能丰富、可扩展性强、并且带有内置监控和安全功能的连接池,Druid 是更好的选择。
4784

被折叠的 条评论
为什么被折叠?



