[CQOI2014]数三角形(容斥原理 + 组合计数)

文章介绍了如何解决一个关于计算nxm网格上三点都在格点上的三角形数量的问题。给出了算法思路,包括计算总的三点组合减去共线的三点组合,特别处理了与坐标轴平行和斜线的情况,涉及到了组合数学和最大公约数(GCD)的知识。AC代码展示了具体的实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

[CQOI2014]数三角形 (nowcoder.com)
来源:牛客网

给定一个n x m的网格,请计算三点都在格点上的三角形共有多少个。

下图为4x4的网格上的一个三角形。

 注意三角形的三点不能共线。

输入描述:

输入一行,包含两个空格分隔的正整数m和n。

输出描述:

输出一个正整数,为所求三角形数量。

示例1

输入

复制2 2

2 2

输出

复制76

76

说明

数据范围
1<=m,n<=1000

 思路:首先我们可以知道n*m矩阵是有(n+1)*(m+1)个点,所以可以这样计算,首先算出来任取三点的个数,然后减去三点共线的个数即可。

三点共线的情况是有2种:

1:与x轴平行或垂直 他的个数可以是每条线上任选3点的 个数,即 C(n+1,3)*(m+1)+C(m+1,3)*(n+1).

2:斜着:假设该斜线可以用y=kx+b表示,k可能大于0,也有可能小于0,其实只需要统一算出大于0的个数然后乘2就行了,对于计算k>0的:我们可以先找到一个直角边为i,j的直角三角形,然后其斜边上的两个端点为两个所需要的点,第三点上这斜线上除了端点还存在的格点上找,数量为gcd(i,j)-1,然后像这样的线段可以平移得到的有(n-i)*(m-j)种,因为正负两种所以乘2 。然后对所有的进行求和就行

最后用res - 1的情况数量 - 2的情况的数量。

描述一下上面为什么是gcd(i,j)-1。

根据这个图:

h=6,l=6 ,斜线总覆盖点为gcd(6,6)+1个点,对于不同长度线段(两个端点在整点上)都对应到一个长或高不同的直角三角形,对于定长的线段我们可以通过将两个点固定在线段的两个端点,另一个点从中间的点中选来得到,方案数就为gcd(h,l)-1。

AC代码:

#include<bits/stdc++.h>
using namespace std;
#define int long long
int C(int x,int y){
    return x*(x-1)*(x-2)/6;
}
signed main(){
    int n,m;
    cin>>n>>m;
    int num=(n+1)*(m+1);
    int ans=C(num,3);
    ans-=C(n+1,3)*(m+1);
    ans-=C(m+1,3)*(n+1);
    for(int i=1;i<=n;i++){
        for(int j=1;j<=m;j++){
            ans-=(__gcd(i,j)-1)*(n+1-i)*(m+1-j)*2;
        }
    }
    cout<<ans<<"\n";
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值