参考官方网站:Object Detection Datasets Overview - Ultralytics YOLO Docs
整体目录如下:
1. 数据集的准备
dataImg文件夹存放images图像(.jpg)文件夹和labels图像的数据标注(.txt)文件夹,注意每个文件夹里的(.jpg)和(.txt)的命名要一一对应上,test--测试数据、train--训练数据、val--验证数据。
Yolov8的数据标注工具我使用的是:
CVAT(Leading Image & Video Data Annotation Platform | CVAT)
Make Sense(Make Sense -->用这个我得一天内完成标注,因为没找到中途退出并保存的方法,关闭或刷新网站后都要从头开始)
2.创建config.yaml文件(配置文件)
config.yaml文件需要自己创建,存放图像的路径path为绝对路径。根据自己图像检测的类别和类号编辑names里的内容,类号从0索引开始。
3. main.py文件
main.py文件为入口文件,图像训练的代码运行由这开始。
wandb.login(key='...(your_api_key)...')这个是原先没有的,但在近期训练过程中终端提示需要就加上去了,key的获取可以进入WandB官网(Weights & Biases: The AI Developer Platform)注册账户,获取API密钥,自己用就好,不要提供给别人。(训练结束后会在目录里生成wandb文件夹,目前我用不到,没了解是做什么用的)
注意 YOLO('yolov8n.pt') 和 data='config.yaml' 的路径,我的三个文件(main.py、yolov8n.pt、config.yaml)都是放在同一根目录下的,如果不是的话要注意调整一下路径。
代码内容不是固定不变的,我是参考官方网站自己简单的对图像进行训练,因此可根据自己的需求添加或调整相关的参数。
4. runs文件夹(训练结束后自动创建)
runs文件夹里会存放模型训练的过程和结果,目录为.../runs/detect/train,best.pt文件存放在weights文件夹里。
如有错漏,欢迎指正。